Humboldt-Universität zu Berlin - Faculty of Mathematics and Natural Sciences - Department of Physics

Humboldt-Universität zu Berlin | Faculty of Mathematics and Natural Sciences | Department of Physics | Colloquium | Colloquia | Department Colloquium: Prof. Dr. André Thess (University of Stuttgart and DLR) - including award cerenomy Lise-Meitner-prize

Department Colloquium: Prof. Dr. André Thess (University of Stuttgart and DLR) - including award cerenomy Lise-Meitner-prize

Lecture on "Carnot Batteries for large scale electricity storage and the decarbonization of coal power plants"
  • When Jul 06, 2021 from 03:00 to 05:00
  • Where Zoom
  • iCal

Department Colloquium: Prof. Dr. André Thess (Professor of Energy Storage at the University of Stuttgart and Director of the Institute of Engineering Thermodynamics of the German Aerospace Center) will speak about "Carnot Batteries for large scale electricity storage and the decarbonization of coal power plants".

Directly before the colloquium, the Lise Meitner Prize of the Friends and Sponsors of Physics will be awarded (3 pm). The colloquium is scheduled for 3:15 p.m. as usual.

The colloquium lecture will be held virtually using Zoom. The registration data will be sent out in advance via the usual mail distribution lists or can be requested at gd-at-physik.hu-berlin.de.

Abstract

Coal-fired power plants are the largest single emitter of carbon dioxide worldwide. Against this background, Germany is discussing the decommissioning of coal-fired power plants and their replacement by low-carbon sources of electricity. However, such decommissioning incurs high costs and loss of firm power capacity. It is therefore a formidable challenge for energy research to develop cost-effective concepts for decarbonizing these plants. The DLR is currently carrying out research on large-scale electricity storage using the emerging technology of Carnot-Batteries. A Carnot-Battery transforms renewable electricity into high-temperature heat that is stored in low-cost thermal energy storage towers using molten salt at temperatures between 290°C and 565°C or ceramic solid storage with air as heat transfer medium at temperatures up to 750°C. The thermal energy is later transformed back to electricity on demand. Firm capacity can be guaranteed using renewable or fossil resources like biomass or natural gas for backup potentially covering the larger periods of several weeks without reasonable solar and wind resources.

Carnot-Batteries have the potential to solve the large-scale energy storage problem, in order to facilitate the future needs when extending the renewable energy production and use reliable, well known and low-cost components. The necessary storage capacity can be made available through Carnot batteries in short instance using the existing infrastructure of large conventional power plants and the grid connections and the existing experienced staff. Based on its expertise in Carnot-Batteries and thermal energy storage systems for solar thermal power plants the DLR has proposed to convert coal-fired power plants into storage power plants (SPP) by keeping a part of the infrastructure of the old plant and replacing the coal-fired boiler with the thermal energy storage together with leading utilities in Germany and worldwide.

The present communication will provide an overview of the technical features of storage power plants along with estimates of their costs and their role in the decarbonization of the German and global fleet of coal-fired power plants. The communication will also outline a proposal for a “Reallabor” in collaboration with a German utility company expected to provide the first plant-scale demonstration of the DLR concept. Finally, the communication will present the DLR Global Coal Atlas Project that intends to analyze the technical feasibility and the costs of decarbonizing coal-fired power plants worldwide.