Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Faculty of Mathematics and Natural Sciences - Optical Systems

Humboldt-Universität zu Berlin | Faculty of Mathematics and Natural Sciences | Department of Physics | Optical Systems | Publications | Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

Nick Rothbart, Heinz-Wilhelm Hübers, K. Schmalz, J. Borngräber, and D. Kissinger (2018)

Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

Frequenz, 72(3-4):87–92.

Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHPs 0.13 um SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

Gasspektroskopie, Gassensor, Terahertz, Millimeterwellen