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Abstract

Using atom interferometry, we have measured g, the local acceleration due to gravity, with
a resolution of Ag/g = 2 x 1078 after a single 1.3s measurement cycle, 2 x 1077 after 1
minute and 1 x 1070 after 2 days of integration time. The difference between our value
for g and one obtained by a “falling corner—cube” optical interferometer is (7 £ 7) x 1079,
The beam splitters and mirrors of the atom interferometer are implemented using velocity
sensitive stimulated Raman transitions and laser cooled cesium atoms in an atomic fountain
are used as a well defined source of atoms.

We present experimental results, including the observation of tidal effects and a com-
parison with the “falling corner—cube” absolute gravimeter. We extend previous methods
of analyzing the interferometer to include the effects of a gravitational gradient and finite
length Raman pulses. We also present a detailed experimental and theoretical study of

potential systematic errors and noise sources.
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Figure 1: A very old idea ...
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Chapter 1

Introduction

1.1 Gravity measurements

The acceleration due to gravity*, commonly denoted as g, is a site dependent quantity which
also varies with time. Its value is important for many scientific fields, including geophysics
and metrology [1]. Precise measurements of g also have profound practical applications in
prospecting for oil, water and other natural resources.

In metrologie, g is important because most force measurements use the weight of a
known mass as a reference, which is only possible if the value of g is accurately known.
Force measurements in turn are used to realize many other quantities — including pressure,
temperature and current — which therefore depend on the value of g as well.

Geophysical applications, as well as prospecting, mostly involve mapping spatial vari-
ations in gravity to gather information about Earth’s spin, shape and composition. The
required measurement accuracy for these purposes may be anywhere between 107 and
1078, Other applications require monitoring the small, time dependent changes in gravity
caused by tides or crustal deformations. In fact, these measurements are usually the ones
that require the highest measurement accuracies, typically a few parts in 10 or better.
Table 1.1 lists many gravitational effects and their typical magnitudes.

Instruments which measure gravity come in many different forms, several of which are
listed in Table 1.2, together with their typical performance parameters. The main distinc-

tion is between relative and absolute gravimeters.

*Although gravity is by far the most important contribution to g, it also includes centrifugal terms due
to Earth’s rotation.
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Type

Magnitude

Geographical gravity variations
e global scale

e regional scale

~1073 g
~106 ¢

Free air gravity gradient

~3x1077 g/m

Tidal effects

e basic tides

e elastic response
e ocean loading

e polar motion

Environmental effects
e atmospheric pressure

e water table

Man—made environmental changes
e trains, trucks, elevators, people, ...

e major construction work

~107%¢g
~1078 ¢

Geological and geophysical effects
e postglacial rebound

e tectonic plate movements

e change in ocean levels

e core/mantle boundary effects

e inner/outer core boundary effects

~ 1079 g/year
~ 1079 g/year

~ 10712 g

Table 1.1: Important gravitational effects and their typical magnitude.
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Relative gravimeters are usually spring—type instruments which employ a very stable
and well characterized spring to support a test mass against gravity. Even slight variations
in gravity manifest themselves as measurable changes in the spring’s extensions. The res-
olution of these instruments can approach 1072 and they can be made very compact and
transportable, which makes them useful for geophysical prospecting applications. Their
main shortcoming is that their readings are only relative and need to be calibrated against
known gravity differences. They also show very substantial drifts which require frequent

re—calibration and make it very hard to compare measurements taken at different times.

Type of gravimeter Noise (g/v/Hz) | Drift (g/day) | Accuracy (g)
Spring/mass systems 1x 10710 3x10°8 N/A
Levitated superconducting spheres < 10712 2x 10710 N/A
Falling corner—cubes 5x 1078 - 2% 1079
Atom interferometer 2x 1078 - <1x1078

Table 1.2: Different types of gravimeters and their typical performance. The noise levels
for the falling corner—cube gravimeter and the atom interferometer are for measurements in
our lab (see Sec. 4.4). Under ideal conditions the noise of the falling corner—cube gravimeter
can be 10 times lower.

Cryogenic gravimeters |2, 3] offer the best noise performance of all instruments. In many
respects they are an improved version of spring—type gravimeter. They employ a supercon-
ducting sphere which is levitated in a magnetic field and use force feedback techniques to
counter—balance variations in gravity. While the observed drift rate is substantially smaller
and better predictable compared with other spring-type gravimeters, it is still present and
complicates long term measurements. Vibration induced flux—jumps in the superconductor
can cause offsets in the gravity readings. Since they are essentially unavoidable when trans-
porting the instrument, this type of gravimeter is unsuitable for comparing gravity values

between different sites.

Absolute gravimeters are required for several applications that go beyond the capabilities
of relative instruments. In addition to metrology applications, which obviously require an
absolute gravity value, this includes comparing gravity measurements taken far apart in
space and time. Pendulum measurements are the classical method for obtaining absolute

gravity values, but they are very tedious and their accuracy is limited to about 10~7. Modern
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instruments instead use a laser interferometer to monitor the motion of a freely falling
object, usually a corner—cube retro—reflector. Many such absolute gravimeters [1, 4, 5] have
been developed since 1950, and after many improvements they have now reached accuracies
of ~2uGal .

Even the performance of the latest falling corner—cube gravimeters leaves room for im-
provement. Their noise levels are higher than those of relative gravimeters, mostly because
the measurement is not continuous but uses discrete drops at a maximum rate of 1 Hz. In
practice, the drop rates are often reduced further to increase the lifetime of the instrument
and to provide sufficient settling time for drop related vibrations. The measurement accu-
racy is currently limited by a number of systematic effects, not all of he fully understood
[5].

Our approach to absolute gravity measurements is in many respects resembles the falling
corner—cube method. However, instead of observing a corner—cube we monitor the accel-
eration of laser cooled cesium atoms in an atomic fountain. This method is interesting
in its own right, since for the first time it allows one to measure the effect of gravity on
microscopic particles with an accuracy similar to that achievable for macroscopic objects.
Furthermore, it has the potential of achieving better measurement resolutions, since it al-
lows higher repetition rates. Finally, it could offer better measurement accuracies, since it
is not subject to some of the systematic effects affecting falling corner—cube instruments.

While the idea of observing atoms while they accelerate in a gravitational field is very
straightforward, the actual implementation is substantially more difficult. The most intu-
itive method would be to monitor the Doppler shift of a suitable atomic transition while
the atom accelerates, but there are several problems with this approach. Most importantly,
reaching a resolution of 107 requires measuring Doppler shifts to within few milli-Hertz,
which is much to small compared with the transition linewidth, the laser linewidth or even
the Doppler broadening due to the velocity distribution of the laser cooled atoms. One also
has to consider that the atomic momentum is disturbed whenever a photon is absorbed or
emitted.

Despite these objections it is still possible to make the idea work. The solution is to
employ a more sophisticated approach using atom interferometry. By choosing an appropri-

ate interferometer configuration one can then circumvent all the problems mentioned above

"The uGal is the most common unit for precision gravity measurements and we will use it extensively in
this work. 1 uGal = 10"°% cm/s® =10 ¥ m/s* ~ 10 % g,
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and indeed measure the acceleration induced Doppler shift with the envisioned very high

levels of accuracy and resolution.

1.2 Atom Interferometry

The idea of making an matter—-wave interferometer using neutral atoms [6, 7] has been
around for a long time. It was finally realized in 1991, when four very different atom
interferometers were demonstrated by research groups in the United States and Germany.
Two of the experiments used diffraction by micro—fabricated slits (Konstanz [8]) or gratings
(MIT [9]) to implement beam splitters and mirrors. The other two utilized the momentum
recoil associated with the absorption or stimulated emission of optical photons during one—
photon (PTB [10]) or two—photon transitions (Stanford [11]). Subsequent experiments [12]
have also shown the feasibility of using diffraction by periodic light fields.

Since 1991 the performance of atom interferometers has improved substantially. By
now they reached a stage of development where they are not just mere demonstrations of
quantum mechanics anymore. Instead, one can now us them as tools to perform a variety
of useful measurements with a precision and accuracy that challenges, if not exceeds, the
performance of any competing instrument. The method pioneered by Kasevich and Chu
here at Stanford in 1991 has been proven especially successful in this respect. It uses
stimulated Raman transitions between atomic hyperfine groundstates to implement the
optical elements of the interferometer and has already been used to measure gravity [11],
rotations [13] and fundamental constants [14, 15, 16]. It is also the method of choice for
our measurement of g.

Stimulated Raman transitions have been discussed elsewhere in great detail [14, 17].
The basic process is illustrated in Fig. 1.1 and can be summarized as follows:

(a) The atom is illuminated by two counter-propagating laser beams whose frequency
difference equals the splitting between two hyperfine ground states of the atom. We can
assign them an effective wave number kog = ki1 — ko (keg = |ko| + |kq| for counter
propagating beams) and an effective frequency weg = wi — wa, where k; and w; are the
equivalent quantities for the individual laser beams.

(b) Absorption and stimulated emission of photons during a Raman pulse can si-
multaneously change the internal state of the atom and its momentum by mvye., where

Viec = hkegr/m is the recoil velocity. The transition probability depends on the pulse area
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Initial:

hk, »P=0
N\NN~>

Final:
2 hk, I, p ="h (k-ky) =h k

Oo=>

Figure 1.1: An atom undergoes a stimulated Raman transition. It absorbs a photon of
frequency wq and emits another one (via a stimulated emission) of frequency wsy. Since both
photons carry momentum, and because momentum has to be conserved in the process, the
atom receives a recoil momentum kick.

and can be adjusted to create either beam splitters or mirrors.

(¢c) The quantum mechanical phase the resulting superposition state depends on the
local Raman phase ¢; = kot 2; — Wesrt;.

Figure 1.2 shows how a sequence of three such Raman pulses is used to split, reflect
and recombine an atom while simultaneously changing its internal state. At the end of
this sequence the fraction of the atoms in one of the states is detectedt. The result is
an oscillatory function of the interferometer path difference, which, among other things,
depends on the gravitational acceleration.

The total phase difference between paths A and B can be divided into two parts. The
first contribution describes the periods of free evolution between laser pulses and is given
by

Ao = 3 (55— 54) (1.1)

in the limit where the classical action
27

Sa = | Ll 2(0)) de (1.2)

along each path is much greater than 7 [18].

#There is a one—to—one correspondence between atomic momentum and internal state. In principle one
could therefore also determine the final state using a momentum measurement, but this is much harder to
implement experimentally.
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i TW2-pulse T-pulse TW2-pulse
(beamsplltter) (mirror) (beamsplitter)

0 T 2T

Figure 1.2: Basic Mach-Zehnder type atom interferometer with (curved lines) and without
(straight lines) gravity. The atom can either be in the internal state |a) (dark) or |b) (light).
The lines represent the classical trajectories originating from one of the space—time points
comprising the initial wave packet.

The second contribution is due to the interaction with the Raman beams. Whenever
the state of the atom changes during such an interaction, it acquires an additional phase
shift that is determined by the local Raman phase ¢; and has a sign that depends on the
initial state of the atom (see chapter 2). Tracing all the state changes we find that this

causes a phase difference of

Adighe = (91 — ¢3) — (o5 — ¢5). (1.3)

2 — mgz) the free evolution contribution van-

For uniform gravitational fields (£ = v
ishes. The second contribution is calculated using the local Raman phases ¢; = kefr2z; — wesrt;
and the known atomic trajectories z(t). Without a gravitational field the trajectories are
straight lines and the inherent symmetry of the situation (Fig. 1.2) leads to A¢ = 0. The
introduction of a gravitational field breaks the symmetry. The atom now falls three times
as far during the second half of the interferometer as during the first half and we find a

phase shift proportional to the gravitational acceleration:

Ao = kggT? = %vrngTz. (1.4)
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This simple equation describes the interferometer extremely well and has to be modified
only slightly to account for gravity gradients and finite length Raman pulses (Sec. 2). The
equation also indicates that it is highly desirable to make the time T between the inter-
ferometer pulses as long as possible since the measurements sensitivity scales quadratically
with this parameter. Indeed, one of the biggest improvements made since the first mea-
surements in 1991 has been the implementation of an active vibration isolation system that
allowed us to increase T to at least 160 ms without loss of interferometer phase contrast.
Our interferometer uses laser cooled cesium atoms in an atomic fountain and Raman
lasers that operate close to the Dso—line at 852nm. For a typical time T = 160 ms between
Raman pulses an interferometer phase shift of 1 radian corresponds to ~ 2.6 x 1077 g.
Accordingly, the standard gravitational acceleration of 9.81m/s causes a phase shift of

approximately 3.8 x 109 rad!

1.3 Overview of this thesis

Chapter 2 presents a more detailed theoretical analysis of the interferometer, including
the effects of gravitational gradients and finite length Raman pulses. Chapter 3 describes
the experimental setup. Chapter 4 gives a overview of the experimental results, including
long term gravity measurements and a direct comparison with one of the best classical
gravimeters. The next two chapters are then devoted to an extensive discussion of the
instrument’s performance: Chapter 5 deals with issues related to measurement noise and
fringe contrast, while Chapter 6 contains a extensive analysis of potential systematic errors
and how they affect the accuracy of the measurement. Finally, chapter 7 summarizes the
results, puts them in context and considers the prospects for future improvements and

applications.



Chapter 2

Theory

In this chapter we use several different methods to analyze our light pulse interferometer,
with a special emphasis an aspects that are often neglected but become important for high
accuracy measurements. First, we present various forms of a path integral treatment that
includes the effect of a linear gravity gradient. Then, we use a modified Bloch—vector

formalism to study the effect of finite length interferometer pulses.

2.1 Gravity gradients

There are many different ways to describe an atom interferometer’s sensitivity to gravi-
tational forces. For the early interferometer experiments [11] Kasevich and Chu used a
method that describes the experiment in a freely falling frame where the gravitational force
vanishes and the atomic momentum between light pulses becomes a conserved quantity.
Under these conditions the interferometer can be analyzed in the momentum picture as
a sequence of stimulated Raman pulses acting on a stationary atom and one can easily
calculate the interferometer phase shift from the phases of the transformed light fields.

As elegant as this method is, it relies on an equivalence principle argument and there-
fore only works if the gravitational field in the measurement region can be considered con-
stant. At our targeted measurement accuracy of 1 pGal and for a typical gravity gradient of
300 nGal/m this is definitely not the case anymore. Over the standard free fall distance of
15 c¢m gravity changes by 45 pGal, and even the 1 mm maximum splitting between the two
interferometer arms (for 133C's atoms, lighter atoms would give an even bigger splitting)

corresponds to a worrisome gravity difference of 0.3 pGal. We therefore need a more general
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description which takes into account spatially inhomogeneous forces.

Since we have to deal with spatially varying forces it seems advisable to analyze the
experiment in the position picture. In principle, it would be possible to analyze the whole
process by solving the time dependent Schrodinger equation for the atomic wave packet
propagating through the system and calculating the expectation value for the appropriate
quantum mechanical observable. Several authors have indeed followed this approach [19, 20],
but there are difficulties caused by the very different nature of the atomic evolution during
interactions with the light fields compared to the periods of free propagation. The obvious

solution is to treat these two cases separately and then combine the results.

Between pulses the atomic wave packets propagate over macroscopic distances while
being subjected only to smoothly varying fields and forces. This suggests using the path
integral description of quantum mechanics [18] as a natural framework for analyzing the
atom. interferometer. The effects of infinitesimally short beam splitter and mirror pulses
can be integrated into the formalism using a simple set of rules, which have been worked
out by Bordé and others [21, 22] for the case of single photon transitions. With small

modifications, they can also be used to treat stimulated Raman transitions.

These rules are summarized in Table 2.1 and illustrated in Fig. 2.1. Each interaction
with the light field forms a potential beam splitter because the internal state of the atom
can either change or stay the same, with a relative probability that depends on the details
of the process. Whenever the internal state changes there is a corresponding change of the
atomic momentum and future trajectory. Since there are two possible input states there
are four possible processes and each is associated with a phase factor. This phase factor,
which depends on the phase of the light field, has to be added to the quantum mechanical

phase of each path which involves that particular process.

While this path integral approach has been used successfully to analyze a wide variety
of interferometry experiments, it has never been applied to one with the same accuracy
requirements as ours. Therefore, in order to properly understand the formalism and to
make sure that it is up to the task, we perform our own analysis starting from more basic
principles and paying special attention to all the approximations which are usually made.
We present three different methods, compare their relative merits and obtain an error

estimate for making approximations in two of them.
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Figure 2.1: Basic processes during atom/light interaction. (a) When changing from
internal state |a) to |b) the atom absorbs one photon from Raman beam 1 and emits another
one co-propagating with Raman beam 2. Its momentum changes by +hkeg. (b) When
changing from internal state |b) to |a) the atom absorbs one photon from Raman beam 2
and emits another one co—propagating with Raman beam 1. Its momentum changes by
—hkeg. (¢)(d) The atom may also stay in its original state.

int. state | momentum phase factor ¢;
Single photon | a — b p— p+ hk +(kiz —wt; — P+ %)
transitions b—a p+hk—p —(kiz —wt; — o+ %)
a—a p—p 0
b—b p+ hk — p+ hk 0
Raman a—b p — p+ hkey aAVCg + (kefrzi — Westti — Peft + 5)
transitions b—a p+ hkeg — p avg — (kefrzi — Wesiti — Geft + 5)
a—a p—p (dma — 5O8T)
b—b p+ hkep — p+ hkei | (905 + 345)

Table 2.1: bf Rules for atom/light interaction. (z;,t;) is the spacetime point of the interac-
tion. The quantities k, w and ¢ denote the wave vector, frequency and phase of the light
field. Note that the only change for stimulated Raman transitions — besides using the
effectlve quantities kef, wer and ¢eg — is the appearance of additional phase factors %vg
and gb due to AC-Stark shifts. See Sec. 2.2 for related definitions.
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2.1.1 “Exact” path integral treatment

Kasevich and Chu used the path integral formalism as one method to analyze their inter-
ferometer in 1991 [11]. We now extend their treatment to include the effect of a linear
gravity gradient, closely following the steps outlined in the tutorial paper by Storey and
Cohen-Tannoudji [23].

We will assume a two level system with wavefunctions ¥, and ¥y, and an initial plane

wave state with momentum py:

1 exp F(POZO - Eoto)}
v 21h h

For a two—path interferometer, knowing the phase difference between the different paths

\I/a(ZO,to) = and \I/b(Z(),to) =0 (2.1)

leading a spacetime point (zg,t4) is sufficient to predict the phase, though not the contrast,
of the observed interferometer fringe as a function of g. It can be calculated using the

following algorithm:

e Find the two classical paths 'y and T'g (taking into account the momentum changes
due to the interactions with the light field.) which (a) go through point z4 at time
tq, (b) have initial momentum pg at time tg and (c) lead to a specified internal state.
Notice that the different paths originate from points z64 and zég which generally are

not identical (see figure 2.2).

e Calculate the classical action
ty
Sa = [ Ll x0) d (2.2)
to

along each path and find the phase difference

Ao = 3 (SE-51) (2.3)

e For each path add up the additional phase shifts due to the interactions with the light
fields (see Table 2.1) and find the phase difference

Adigee = > o2 — > ot (2.4)

PathB PathA
e Account for the different initial points by defining the quantity

ZB _ ZA
Ad)splitting - w . (25)
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e Calculate the total phase difference as

A(Zstotal = A(Zspath + Agblight + Agbsplitting . (26)

For a gravitational field with a linear gradient, the Lagrangian is given by
L= %2'2 —mgoz + %722 , (2.7)

where z denotes altitude and the signs for acceleration gg and gradient v are chosen to
be positive for normal conditions (objects accelerate downwards, magnitude of acceleration
decreases with increasing z).

Solving the Euler—Lagrange equation we find the exact classical path for initial position

zo and velocity wvg:

- % Z _% cos ﬂsin
z(t) = 'y+<0 7) h(tﬂ)—kﬂ h (/)

) = 7 <z0 - %) sinh (£4/7) + vo cosh (£4/7) (2.8)

When expanding to second order in the gradient v we regain the well known parabolic

motion for constant acceleration plus some corrections for the gradient:

z(t) = (zo +vot — %gotz) + 7yt (%zo + ot — ﬁgotz) e (2.9)

£t) = (vo—got) + vt (20 + ot — hgot?) +--- . (2.10)
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e
il

Figure 2.2: Classical interferometer paths. (a) No gravitational field, linear trajectories.
(b) Uniform gravitational field, parabolic trajectories. After the final beam splitter pulse at
time t3 both paths overlap exactly, for both possible outcomes. (c¢) Gravitational field with
linear gravity gradient, hyperbolic trajectories. Interference at time t; demands different
initial positions at time %;.
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Following the above algorithm outlined in equations 2.2-2.6 we have obtained an exact
analytical solution using computer algebra. Here we present only the first few terms of its

power series expansion in the gradient ~:

Asztotal = (mUrecT2/h) g0 (211)
+ 7 (mvreeT/h) (f5 goT? — 56T — )
+ 2T2 (mvrecT /h) (3T gOT2 - %TJOT - % z20 — %UrecT - %Urechet)
4

We may rewrite this as

Imeas = 90 (212)
+ v {%goTQ—Q_JOT_ZO}
+ 72T2{360 90T? = 1 00T — 5 20 — g vrecT — % vrechEt} o

if we define the measured gravity value gmeas = Ad/(mvrecT?/h) which equals the actual

gravity value gg when there is no gravity gradient.

In these equations T is the time interval separating the interferometer pulses, Ty.; is time
delay between the final pulse and the actual detection of the atomic state and ¢y denotes
the time of the first pulse. The quantities zp and vy are the initial position™ and velocity of
the classical paths, g is the local gravity value at zp. The recoil velocity vyee = hkeg/m is
directly proportional to the effective wave vector of the Raman beams and also determines
the maximum separation of the two interferometer paths. To simplify the equations slightly,
and for additional reasons that will become clear later, we also introduce the average velocity
Ty = Vg + %vrec of the two different paths just after the first Raman pulse.

An interesting feature of this result is that the phase shift depends on the detection delay
Tyet = tq — t3. This comes about because the separation of the two path’s initial points 264
and zég (see algorithm and Fig. 2.2) is a function of Ty.;. However, for typical experimental

parameters (see Sec. 2.1.4) the separation is only 1.7 A and the effect is extremely small

(< 10716 g).

*The two paths may have slightly different initial positions. In that case we use z&.
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2.1.2 Perturbative treatment

The above treatment is fairly involved mathematically and is therefore rarely used. Instead,
one generally uses a much simpler perturbative path integral approach to calculate the
interferometer phase shift.

Let us assume that we already know the interferometer phase difference for a certain
field configuration and just want to calculate the change due to an additional field. As
long as this additional field is sufficiently small, it should be possible to use the following
method:

e We already know the interferometer phase difference A(/Jggzal and classical paths T'(©

for a system with Lagrangian L.

e Introduce the additional field as a perturbation to the Lagrangian (e < 1):
L = Lo+ely (2.13)

e Integrate the perturbing Lagrangian along the unperturbed paths T'©) to calculate the

first order phase correction:

M €
AplD) = ﬁ< [ Lrde = [ L dt> (2.14)
B A

e The new interferometer phase difference is approximately

0 1
A¢total = Aqsgo%al + Agbgot):al (215)
There are actually two different ways to perform the perturbative calculation. One might
first treat both the gradient and the constant field as perturbations. In this case the
perturbation Lagrangian £1 = —mgoz + %722 is integrated along straight paths to obtain

the complete phase shift. But the result,

Gmeas = go — 7{@0T+ZO}7 (216)

does not agree with the previous one, not even to first order. It is actually wrong if goT'
is bigger or comparable to vg. This is not totally unexpected, since the gravity induced
changes in the trajectories of slow atoms are dramatic and large compared to other relevant

size scales, like the path separation. Considering gravity a “small” perturbation is therefore
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quite implausible and it is rather surprising that this method gives the correct result for
constant gravitational fields [23].

A better approach is to treat only the gravitational gradient as a perturbation on top of
a constant gravitational field. This means that we integrate the perturbation Lagrangian
L1 = %72’2 along “unperturbed” paths which are the parabolic free fall trajectories in a
constant gravitational field. The resulting phase shift is then combined with the known

contribution for the constant gravitational field. This way we find

gmeas = go *+ 7{% gOT2 — vl — ZO} s (217)

which replicates the exact path integral result from above up to first order.

2.1.3 Classical description

The terms up to first order in equations 2.12 and 2.11 do not depend on the recoil velocity
(i.e., the separation of the two interferometer arms), the mass of the atom or Planck’s
constant. One might argue that the phase shift A¢oiot, given by equation 2.12, is the relevant
quantity and that it does depend on all these parameters through the scale factor mu,e. 12 /h.
However, this is merely an illusion, since we can use the definition vy = hikegt /m of the recoil
velocity to rewrite this scale factor in terms of the parameters we control experimentally,
i.e., Raman wave vector and pulse timing. It then takes the form ke.gT?.

This is very interesting, since it suggests that this type of measurement is not intrinsically
“quantum mechanical” . Consider the limit of infinite mass m: The separation between
the interferometer arms goes to zero, the deBroglie wavelength gets arbitrarily short and
the particle essentially behaves in a totally classical manner — but the measured phase
shift remains unaffected.

All this means that for most practical purposes there is a much simpler way of predicting
the measured phase shift. We can simply ignore the quantum nature of the atom and model
it as a classical point particle that carries an internal clock and can measure the local phase

of the light field. Then we can calculate the phase shift using the following algorithm:

tThe same is true for gravity measurements performed by single crystal neutron interferometers. Al-
though in this case the phase shift is usually expressed as A¢ = g%APhasespace, it can be rewritten as

Ao = gkiat (%—;”)2 in terms of the experimentally controlled parameters lattice wave vector kiat, distance Ax

between the three portions of the silicon crystal acting as beam splitters, and initial neutron velocity.
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e Calculate the classical path z(t) of the particle for initial position zg and initial velocity

vo (not affected by light pulses).

e At times t1, to and t3, separated by intervals T, calculate the local phase ¢; of the

light field at the position of the atom. If the Raman laser frequencies are constant we

have ¢; = kef2(ti) — wettti — ¢o
e Obtain the interferometer phase shift as A¢ = ¢p3 — 2¢2 + ¢1.

e Define measured gravity as gmeas = A@/ ket T

If we think of light field as a ruler with graduations spaced Ao apart, then it becomes clear
that this essentially mimics the procedure one would follow to determine gravity with just

three position measurements:

e Calculate the classical path z(t) of the particle for initial position zg and initial velocity

vo.

e At times t1, to and t3, separated by intervals T', measure the position z; = z(¢;) of the

atom.
e Define measured gravity as gmeas = (23 — 220 + 21)/T?

In the case of a linear gravity gradient (using equation 2.8 for z(t)) both methods give us *

Omeas = Ti%/ (g0 — 207) cosh (T'/7) — voy/7 sinh (T'/7)] sinh 2 (%) . (2.18)

The resulting power series expansion,

gmeas — gJo + 7Y {% gOT2 — vl — ZO}

(2.19)
1 72T2{%90T2—%U0T—%ZO} +oee

is identical to the one (Eq. 2.11) obtained using the exact path integral method if we
substitute vy for 7y and neglect the vy term (or, in other words, take the limit of infinite

mass m).

tFor the symmetrical case, where to coincides with the middle pulse instead of the first one, this simplifies

10 gmeas = TL% (go — zo7y) sinh 2 (y)
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2.1.4 Comparison

We have presented three methods which all agree up to first order. This poses the obvious
question whether the higher order terms are at all relevant for our experiment. To answer

it, we evaluate Eq. 2.12 for the typical experimental parameters
2 - —6 1 /.2 _3
g0~ 9.8m/s?, v ~2.9x 107" 1/8°, U ~7.0%x 1077 m/s,
Do~ 1.57Tm/s, zp~0m, T ~0.16s, Ty ~0.16s
and find

g1 = 31x107%gy, ¢@ = 92x1070g, ¢® = 1.9x 107 g,

where ¢ denotes the n—th order term in ~v. At our targeted accuracy of 107%g we can
therefore safely neglect terms of second order and higher.

Given this result, are there any circumstances under which one of the three methods
should be prefered? The “exact” path integral method seems to be safest approach, but
is obviously relatively complicated and also not well suited to deal with finite length light
pulses.

The classical method, on the other hand, is especially easy to adapt for such finite length
pulses (see below). However, one can expect trouble for more complicated field distributions
which lead to forces that are substantially different for the two interferometer paths. Such
problems would become even worse for interferometers with bigger separations between
paths, and the method would be particularly unsuited for situations where material objects
are placed between the two paths. Obviously, the method would also fail to describe any
topological phases, for example due to Aharanov—Bohm or Aharanov—Cashier effects.

The perturbation method also has problems in incorporating finite length pulses. Oth-
erwise, it seems to be applicable even under all the problematic circumstances mentioned
above, as long as the fields involved are not to big. However, while Storey and Cohen-
Tannoudji give very good arguments for the validity of this method under most circum-
stances, they do not explicitly justify its use when combined with the rules for light field
interaction. It is certainly not a priori clear how integrating over the perturbation La-
grangian compensates for ignoring any changes in the atomic position during the laser
pulses. As long as these points are not addressed, some caution remains necessary when

applying this method to high precision measurements.
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2.2 Finite length Raman pulses

In the previous section we have shown that we can get excellent phase shift predictions
using a purely classical method. We do this by effectively assuming an infinite particle
mass, allowing us to treat the external degrees of freedom classically. Furthermore, we
ignore all the quantum mechanical details related to the internal degrees of freedom by
simply summarizing their effect as the ability to measure time, make phase measurements
and combine them into a final phase shift.

It is actually not necessary to make both simplifications at the same time. In fact,
treating just the internal degrees of freedom quantum mechanically will give us a lot of
additional insight into how the interferometer works under less idealized conditions: Pres-
ence of AC—Stark shifts as well as finite duration light pulses of variable length, intensity,

detuning and chirp rate.

2.2.1 Bloch equations

To analyze the effect of using finite length Raman pulses we use a modified Bloch vector
method. We start by modeling the stimulated Raman process as an effective transition
between the two atomic ground states, |a) and |b). The justification for this approach,
which involves adiabatic elimination of the intermediate states, can be found elsewhere
[17, 14, 24]. We now summarize the most important definitions from the paper by Weiss
et.al. [14] for use in our own analysis and elsewhere in this thesis.

To analyze this situation we could in principle work directly with the internal atomic
states and try to solve the appropriate time dependent Schrodinger equation. However, we
find it slightly more convenient to work with the optical Bloch equations. We furthermore
ignore the exited states of the atom, skip the explicit treatment of the Raman process (see
for example Weiss et. al., [14]) and model it simply as an effective transition between the
two atomic ground states, |a) and |b).

The effective 2—photon Rabi frequency and detuning,

0 4 o
Qp = ZTM’ (2.20)

%

_ 2
0 = (w1 —wa) — <wab + B n]jeﬁ + —h;;e%ﬂ) (2.21)
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la>

Figure 2.3: Level scheme for stimulated Raman transitions.

can be defined in terms of the 1-photon Rabi frequencies and detunings,

Qrji = M ; (2.22)
2 2
- kK

Apji = wp — (Wi —wj) + Py _ Ipj ki : (2.23)

2mh 2mh

In all these equations k is index for the light field, ¢ for the excited states, and j for the
two ground states. Fig. 2.3 illustrates the level scheme. The effective frequency, phase and

wave vector are defined as
wef = w2 —wi,  Ger = P2— 1,  ker = ka—ky (2.24)
( |kegt| = |ko| + |k1| for counterpropagating beams )

and the average and differential AC—Stark shifts are

ome = (W +2% /2, a4 = 9°—05°, (2.25)
with
AC | Qi
¢ _ N Pl 92.96
& ; AA;i (220
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As a convenient way to describe the state of the effective 2-level system we use the inter-

action picture density matrix p, defined by

WY = paala)(al + ppulb) (bl + pabla) (bl + pralb){al. (2.27)
The density matrix evolves according to

ihp = Hlp— pHT, (2.28)

where the interaction picture Hamiltonian for the effective 2-level system is given by

HY = —LhQp (7 |a) (b] + €™ b)(a] ) . (2.29)
We introduce the Bloch vector
) U Pab + Pba 2Re|pap]
X = v = iPba — Pab = 2Im[pap] | - (2.30)
W Paa — Pbb Paa — Pbb

For situations where the atom is subjected to external fields of known frequencies it is
usually convenient to go into the “rotating frame” by making the transformation
cosp(t) sinp(t) 0
X = | —sinp(t) cosp(t) 0 | X. (2.31)
0 0 1
Usually this is done for a fixed frequency weg, in which case the Raman phase is simply
given by ¢(t) = wert and the rotating frame is rotating at a fixed rate.
For our experiment, however, the Raman phase in the rest frame of the freely falling

atom is affected by the time dependent Doppler shift and is given by

t
o(t) = dor + /0 [weir + V(1) - keg] dt’ (2.32)

and the rotating frame therefore has a variable rotation rate.

The evolution of the Bloch vector in the rotating frame is governed by the equation

S 7 0 —5(t) 0 U
5|V = sty 0 Qo v, (2.33)
W 0 —Q 0 W

which follows from Eq. 2.29. Note that this equation is valid for arbitrary time dependence
of the effective detuning (¢). However, we are specifically interested in the case of a
linear “chirp” introduced by the Doppler shift of the accelerating atom. We then have
0(t) = o + at, where « is the “chirp rate”.
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2.2.2 Time dependent perturbation theory

For constant detuning it is straight forward to solve equation 2.33 exactly [25, 26]. For a
constant chirp it is also possible to find an exact solution in terms of parabolic cylinder
functions [19]. However, since in our experiment detuning and chirp are both small, we
treat them using time dependent perturbation theory. We first rewrite equation 2.33 in

matrix form:

) 0O 0 0 0 —d&(t) 0
X =MX4VX, M= [0 0 Q[ V=|3dn 0 0 [.(23)
0 —-Q 0 0 0 0

We then use the unperturbed solution

1 0 0
X(t) = MX(0) with M = | 0 cosQot sinQot (2.35)
0 —sinQgt cosQpt

to go into a new interaction picture by making the transformations
X = e M and VI = e My M (2.36)
Finally, we can write down the perturbation expansion
¢ t ot
x/(1) = X'(0) + / ' v (X (0) + / dt’ / A" VYWV ()X (0) 4 -+ (2.37)
0 0 Jo

We can use this formalism to describe a finite length, chirped Raman pulse with §(t) =

dp + at. The Bloch vector (in the original rotating frame) is then given by
X(r) = X)) + XUy + XA () 4+ ... (2.38)
with the zero order terms

U9y = U(0)
V(O) (7-) = cos{oT V(O) +  sin Qo7 VV(O)
w© (1) = —sinQer V(0) + cosQor W(0) (2.39)
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and the first order terms

U(l)(T) = {Qﬁ% (1 —cosQo7) — g—z sin Qo7 — g—(; SinQ()T} V(0)

+ {—% sin Qo7 + 27 cos Qor — S (1 — cos QOT)} W(0)

95 Qo Qo
V(l)(T) = {i (1 —cos Q1) + (5—0 sin QoT} U(0)
Q3 Qo
VV(I)(T) = {Qg% sin Qo7 — g—; — g—?) (1 — cos QoT)} U(0) (2.40)

We can combine these terms and describe the special cases of a F-pulse (Qo7 = 7/2)

Us = U®) + {Qﬁ%—%z)}vm) - {%+%?}W(0)
Ve = {Qi% + %00)} U©O) + W(0)
ws = {Qi% - i?} U0y - V) (2.41)

02 Qo Qo
vo= {Zvo - vo
W, — {%%)ﬂgo)}mm — W) (2.42)

In the periods of free evolution between pulses the atomic state evolves according to

UT) = cosdT U0) + sindT V(0)

V(T) = —sindTU((0) + cosdT V(0)

w(T) = W(0) (2.43)
where T is the length of the time interval and

to+T
5 — — / 5(t) dt (5 = 6(t0)+% for a linear Chil“p) (2.44)

the average detuning during the free evolution.
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A Ramsey sequence consists of two f—pulses of length 7, separated by a time interval
T. We can calculate its effect on the atomic state by first applying Eq. 2.41, then Eq. 2.43
and finally Eq. 2.41 a second time. The result is

0

L V) [{Q%) -2 cosor + {ﬂi% |

URamsey = U(0) lcos oT — é_& sin ST]

+ W(0) [—é—é cos 0T — sin 5T]
0

VRamsey = U(0) HQ&(Q) + (S(TQ——(:T)}cong+ {% - @}

— W(0) Hgﬁ% + (S(TQ—JOFT)} sin 5T}

I/)[’fRamsey = U(O) l—;—d COS ST —sin (ST‘|

0
- V(0) H%% - %Z)} sin ST}
- W(0) lcos 6T — é—i sin ST] (2.45)

2.2.3 Interferometer sequence

We can now calculate the atomic state after the §-m—F atom interferometer sequence. We

model it as two back—to—-back Ramsey sequences to reflect the inherent symmetry of the

situation (modeling it as three individual pulses gives the same result).

first Ramsey sequence second Ramsey sequence
| I I

=21
11 ] [ L
}‘T+ T ‘%‘T‘%‘T‘%‘ T +T‘i

Figure 2.4: Interferometer pulse sequence.
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Assume Wy =1, Uy = Vo = 0 at £ = 0. Using Eq. 2.45 twice we then find the final

atomic inversion

Wa_z = cos(8y — )T — 2% = 0a) 0y — 0)T (2.46)
2 2 Qo
20(T + 271)
Qo

A Cos {(51)—%) (1—I—j—;> T} A COoS {ozT2 (14—2%4—73—;)}

= cos [T +27)T]| — sin [a(T + 27)T

where 8, and &, are the average detunings during the first and second interval of free
evolution (see Eq. 2.44).
In the case of infinitely short pulses (7 — 0, Q¢ — oo, Qg7 = const.) and for a constant

gravitational field (o = kegg) this simplifies to

Wr rz = cos[at’] = cos[kergT?], (2.47)

2

and we recover the previously known result. For finite length pulses equation 2.46 indicates
that the periodicity of the interferometer signal is now generally given by (T4 27)T instead
of T? and that there are further modifications because of the sine term in Eq. 2.46.

These changes would normally complicate the interpretation of the interferometer sig-
nal. In the actual experiment, however, this problem is significantly reduced because we
compensate for most of the acceleration induced Doppler shift by changing the frequency
wefr (see Sec. 3.4.2).



Chapter 3
Experimental Apparatus

The overall experimental apparatus (Fig. 3.1) can be divided in three subsystems:

(a) The atomic fountain apparatus, which provides a well defined source of laser cooled
atoms for the interferometer. It also allows the detection of the final state of the atoms at
the output of the interferometer.

(b) The system for implementing the actual light pulse interferometer, including the phase-
locked diode lasers and the equipment for controlling the frequency and timing of the Raman
pulses. Other components are the Raman beam optics and the magnetic shielding of the
measurement region.

(¢) The vibration isolation system, which allows the large interferometer pulse separations
essential for obtaining our current measurement accuracy and precision. Another part of
this system controls the tilt of optical table to guarantee the proper vertical alignment of

the measurement axis.

3.1 Vacuum system

3.1.1 Main chamber

The experiment is performed inside vacuum chamber (manufactured by Nor-Cal products)
made from type 304 stainless steel (Fig. 3.2). At its core is a 6-way cross with 6 inch
diameter Conflat viewports, which has been mounted with the axis of 3-fold symmetry
(1,1,1 - axis) in the vertical direction. Twelve additional Conflat ports (two 6 inch ports

along the vertical axis, six 4—1/2 inch ports along the remaining 1,1,1-axes, four 2-3/4 inch

27
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Figure 3.1: Overview of experimental setup.



3.1. VACUUM SYSTEM 29

ports in same plane as four of the original ports) have been added to this cross and mostly
fitted with viewports to provide better optical access. Two of the 4-1/2 inch ports are
used to attach a nude UHV ion-gauge and the vacuum pump, originally a high compression
turbo molecular drag pump ( 56 1/s, Balzers TMU 065), backed by a rotary vane pump
(Edwards RV3).

The upper 6 inch port is extended by a 15 inch long tube to make room for the atomic
fountain. This tube also contains a four layer magnetic shielding assembly made from
Hipernom, which has vacuum properties very similar to stainless steel. Inside this shield is
a 11.5 inch long bias field solenoid, wound on an aluminum core and made from ~ 60 m of
1 mm diameter, Kapton coated wire. The whole assembly mounted using several aluminum
spacers. The top and the bottom flanges of the vacuum chamber are both fitted with self

made, high quality, indium sealed viewports.

3.1.2 Cesium source chamber

One of the main chambers horizontal 2-3/4 inch ports connects, through a gate-valve (MDC
GV-1500M), to smaller chamber containing the cesium supply. During normal operation
cesium is kept at the flat bottom of a cold finger made from thin wall (0.01 inch) stainless
steel. The lower part of the cold finger is surrounded by a copper clamp, which can be
cooled to temperatures as low as —35°C using a two stage thermo electric cooler (2 x
Melcor CP 1.4-71-045L) and a water cooled heat sink. The cesium source chamber can also
be connected to an additional ion pump (8 1/s, Varian RVA-8) and pumped down through
a second valve (MDC MAV-150-V). A third valve leads to a thin wall stainless steel tube
containing a cesium ampule.

At some point the cesium needs to be transfered from the ampule to the cold finger.
First the ampule is crushed by using pliers to deform the thin wall tube containing it. Then
the valve to the cold finger is opened and the cesium ampule heated to ~ 150°C. After 24
hours a substantial amount of cesium will have deposited at the bottom of the maximally
cooled cold finger. There are a few very important precautions to take for a successful
transfer: (a) In order to prevent cesium deposition every part of the system, except the
cold finger, should be at a temperature higher than that of the oven. This includes the
ion pump, since it has many internal surfaces that are not actively pumping! (b) Only the
bottom plate of the cold finger should be cooled during transfer and not, as during normal

operation, the walls as well. This is necessary because otherwise cesium is deposited in
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Figure 3.2: Vacuum system.
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regions which will not be sufficiently cold during later operation (this problem is less severe
for a material with lower heat conductivity, glass for example). (c) It is advisable to use a
standard UHV valve between oven and cold finger. While a less expensive, UHV compatible

needle valve (Nupro H series) might work as well, there is a substantial danger of clogging.

3.1.3 Bake out

Because of possible out gassing problems — caused by the Kapton coated wire, graphite
coatings and the magnetic shielding assembly — the initial bake out was performed 150°
Celsius, with all the indium coated windows replaced by blanks. This resulted in a final
pressure of 2.5x 1071 %torr after 3 weeks of baking. Subsequently, the indium sealed windows
were put back in place and a 1 week bake out at 80° proved sufficient to attain the same
pressure level.

At some later point the turbo pump was replaced by an ion pump (30 1/s, Varian)
because of concerns about vibrations. The lower pumping speed of this pump should have
resulted in a base pressure approximately two times higher. This was hard to verify, because
at that time cesium had already been introduced to the system and dominated the vapor
pressure® Still, measurements of the MOT loading time constant indicate that the base

pressure indeed went up by this factor.

3.2 Atomic Fountain

3.2.1 Overview

The atomic fountain provides a pulsed source of cold cesium atoms for the interferometer.
The atoms are initially extracted from a low pressure background vapor and loaded into a
magneto-optic trap [27, 28]. After 600 ms the trap contains ~ 5 x 10% atoms in a ~ 5mm
diameter cloud. They are then launched vertically using moving optical molasses [29], with
an initial velocity of ~ 3.0m/s and on trajectories that will peak ~ 46 cm above the trap.
The temperature of the atoms after the launch is ~ 1.5 uK, well below the usual steady

state minimum temperature of ~ 2.5 1 K [30]. This is achieved by using far detuned, low

*Cesium vapor also seems to cause problems with the ion gauge. Not only is the measured cesium
pressure a factor 4 to high (according to Varian), but over time the ion gauge performance degrades because
of leakage currents, supposedly caused by the formation of a conductive cesium coating.
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intensity optical molasses during the last stage of the launch and by ramping down the laser
intensity slowly instead of shutting it off instantaneously.

While moving upwards, the atoms are placed in a magnetic bias field and subjected to
a sequence of microwave, velocity selective Raman and state selective blow-away pulses.
The remaining ~ 5 x 105 cesium atoms are in the 6s1/2, F' = 3, mp = 0 state and have
an substantially reduced vertical velocity spread, corresponding to a 1D-temperature of
only ~ 10nK. This very well defined sample of atoms then enters a magnetically shielded
region which encloses the top part of its trajectory and where the actual interferometer
measurement takes place.

The interferometer phase shift manifests itself as a modulation of the fraction of atoms
in the I = 4, mp = 0 state. This fraction is determined, after the atoms have left the
magnetic shield and have returned to the location of the original trap, by using normalized
fluorescence detection. This detection takes place ~ 600 ms after the launch. Finally, after
a short delay, the MOT will turn on again — starting the next measurement cycle exactly

1.3 s after the previous one.

3.2.2 Loading the MOT

The magneto-optic trap (MOT) uses three pairs of counter propagating trapping beams in
a 1,1,1-configuration (threefold symmetry around the vertical axis, three beams directed
upwards, three downwards), and the trapping coil axis is aligned with one of the pairs. The
standard operating field gradient is ~ 6 G/cm. Fach trapping beam is circular polarized,
4 c¢m in diameter (Elg—intensity contour), has a typical intensity of 15mW /cm? and a fre-
quency which is ~ 20 MHz red detuned from the 6s; 9, F' = 4 <> 6p3/5, F' = 5 transition at
~ 852nm. One of the trapping beams is nearly overlapped with a repumping beam which
has an intensity of ~ 1.5 mW /cm? and is on resonance with the 6s1/0, F' =3 <= Op3 o, F' = 4
transition.

Under normal operating conditions (cold finger at +5°C, 56 1/s turbo pump) this MOT
has a loading time constant of 2.5s and a steady state population of 3 x 10% atoms, deter-
mined by the very reliable method of optically pumping all the atoms from the F = 4 into
the F' = 3 state and measuring the total number of photons scattered in the process [28].
The trap diameter is ~ 5 mm, but it is relatively hard to measure because usually the MOT
takes on weird shapes when optimized for a cold launch. After the standard loading time

of 650 ms the trap contains 6 x 10® atoms.
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At some point the 56 1/s turbo pump was replaced with a 30 1/s ion pump. The lower
pumping speed resulted in a shorter trap lifetime (~ 1.0s) and an correspondingly smaller
number of trapped atoms. In order to compensate the temperature of the cold finger was

raised to +15°C, resulting in a similar number of atoms trapped after 650 ms of loading.

3.2.3 Launch

The launch process (see timing diagram in Fig. 3.3) begins by shutting off the magnetic
field at the end of the loading phase. After a delay of 7ms, which is necessary to allow
magnetic field producing eddy currents to decay away, the main launch sequence starts by
down shifting the frequency of the upper three trapping beams (traveling downward) by
about 4.0 MHz!. This creates optical molasses in a frame traveling upwards at 3.00m/s,
and the atoms are allowed to accelerate and equilibrate at their new velocity for 2.0 ms.
Then the detuning of all the trapping beams is increased to ~ 60 MHz and their intensities
simultaneously lowered to 1/3 of their original level. After another 0.4 ms the intensities
are ramped down to zero over a period of 0.4 ms. During the whole procedure the intensity
the repumping light is kept constant, and it is the last to be shut off, 0.2 ms later than the
trapping light. This guarantees that all the atoms will be in the F' = 4 hyperfine state after

the launch.

T T
frequency difference 4 MHz

0 MHz I )
trapping / launching intensity |1

60 MHz

average detuning 20 MHz | | 20 MHz
repumping beam intensity |

-4 -3 -2 -1 0 1 2 3
Time after launch (ms)

Figure 3.3: Launch sequence.

TThis is the simplest possible method to launch the atoms, since it only involves changing the frequency
of a single beam. It is essentially equivalent to down shifting the frequency of the upper beams and up
shifting the frequency of the lower beams by 2.0 MHz each. The only difference is a change in the average
detuning of 2.0 MHz, which is negligible compared to the original 20 MHz
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Figure 3.4: Velocity distribution of the atom after launch, measured using velocity sensitive
Raman transitions. A Raman detuning of 100 kHz corresponds to a velocity of 4.25cm/s.
The 1.31 c¢cm/s %fwidth of the Gaussian fit corresponds to a temperature of 1.37 uK

The final ramp down of the intensity is essential for achieving the lowest observed
temperature of ~ 1.5uK (see Fig. 3.4 for temperature measurement). Without it, the
temperature is closer to the usual steady state limit of ~ 2.5 uK [30]. The probable cause
of this improvement is adiabatic lowering of the temperature or atoms confined in local
potential wells of the light field. Additionally, the temperature is very sensitive to beam
alignment — and exactly overlapped and counter propagating beams do not give the best
result. The best alignment is usually found by a lengthy process of trial and error, and
it generally results in a MOT that is not spherical anymore, but rather pancake shaped
and compressed along the symmetry axis of trapping coils. This indicates that the optical
thickness of the cloud, or the ability of scattered photons to escape easily, might play a role

in the process.

Also important is the cancelation of magnetic fields during the launch, which can be
achieved using a set of three pairs of large magnetic field coils surrounding the apparatus.
Initially, the fields can be zeroed to within a few milli Gauss by taking Zeeman spectra
(using either microwave or Raman transitions), but ultimately they are adjusted to achieve

the lowest temperature launch.
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3.2.4 Preselection

Before the atoms enter the atom interferometer, they still need to be prepared in a well
defined initial state. Most importantly, we only want all the atoms to be in a magnetically
insensitive state with mp = 0, while originally they are about equally distributed among all
9 possible Zeeman sublevels of the F' = 4 hyperfine state. Optical pumping would be one
option to transfer the atoms to the mp = 0 state [14], but the associated heating prevent
us from taking advantage of the benefits afforded by the low initial launch temperature. It
is therefore better to just select the atoms already in the mp = 0 state and get rid of the
others.

We also would like to narrow down the vertical velocity distribution of the atoms, be-
cause this allows us to obtain higher contrast interferometer fringes and simplifies the search
for systematic errors: Limited Raman laser power requires relatively long interferometer
pulses, which means that their Fourier limited frequency width is not sufficient to address
all the atoms in the velocity distribution, because of their Doppler shifts. It would still be
possible to operate the interferometer under these conditions, but the contrast would be
limited to 28 % [11]. Furthermore, some systematic errors are hard to identify if one always
has to average over a wide velocity distribution. The goal is therefore to create an initial

velocity distribution that is much narrower then the Fourier width of a typical Raman pulse.

microwave n n
4-5 blow away ,_| ,_|

Raman preslect |_|

2-3 blow away | |

| | | | | | | |
4 5 6 7 8 9 10 11 12 13
Time after launch (ms)

Figure 3.5: Atomic state preparation sequence.

To achieve both these goals, we apply the following procedure involving a rather complex
sequence of microwave, velocity selective Raman and state selective blow-away pulses (see

timing diagram in Fig. 3.5): First we first define a quantization axis by pulsing on a vertical
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magnetic bias field of about 500 mGauss, 2ms after the launch (we choose to define the
moment of the launch as the time when we switch to low intensity, far detuned optical
molasses). At 6.5ms we then apply a microwave m-pulse (~ 100 us long) to transfer all the
atoms in the F' = 4, mp = 0 state to the F' = 3, mp = 0 with very high efficiency (typically
98 %). All the other atoms remaining in the F' = 4 state are then blown away by the
scattering force exerted by a 1 ms long pulse of light in resonance with the F =4« F =5

closed optical transition.

Then a 380 us long, velocity selective Raman m-pulse is applied. [t transfers atoms
in a narrow slice of the velocity distribution, corresponding to a 1D-temperature of only
~ 10nK, back into the F' = 4, mp = 0 state. Afterwards another blow-away pulse, this time
in resonance with the F' = 3 « F = 2 closed transition, eliminates the atoms remaining in
the F' = 3 state.

Now we already have a velocity selected sample of atoms in a magnetic field insensitive
state. However, because of our detection method we would prefer the atoms to be initially
in the F = 3, mp = 0 state. In that case we can detect low contrast signals as peaks on
essentially zero background, instead of having to look for dips in a large, possibly noisy
background signal. The 3-2 blow—away is also not quite as efficient as the 4-5 blow-away,
leaving behind a few percent of atoms in the wrong states and velocity classes. Both
problems can be easily rectified by using another microwave pulse to transfer the atoms

back to the F' = 3, mp = 0 state, followed by another 4-5 blow—away pulse for clean up.

This whole preselection process reduces the number of atoms by a factor of about 135
(factor 9 from selecting Zeeman level, factor 15 from velocity selection), but this still leaves
us with approximately 3 x 106 atoms. Even after taking into account another reduction by
a factor of 10, due to selective detection (see below), the remaining 3 x 10° atoms are still

enough to not limit the performance of the instrument (see Sec. 5).

At first glance one might argue that this whole, complicate selection sequence could
be replaced with a single Raman pulse, which would be velocity as well as magnetic state
selective, and a single 45 blow away pulse. The problem is, that under normal operating
conditions the 1-photon Raman detuning is not large enough to make spontaneous emission
totally negligible: A Raman m-pulse will typically transfer a fraction of a percent of the
atoms via spontaneous processes, a number small enough to be of no concern under most
circumstances. However, in the preselection process only 1 in 350 of the original atoms gets

transfered via the proper Raman process. So even a small spontaneous transfer — which
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can originate from «all the original atoms, not just the selected ones — can result in a large

fraction (~ 60 %) of undesirable background atoms.

3.2.5 State selective detection
Basics

During the interferometer pulse sequence a variable fraction of the atoms is transfered from
the F' = 3 to the F' = 4 state, depending on the interferometer phase shift. This fraction
is measured once the atoms return to the approximate location of the original trap, where
the magnetic field is zeroed to within a few milli Gauss.

The normalized fluorescence detection is implemented using a sequence of two identical
probe pulses and an additional pulse for optical pumping in between (see timing diagram
in Fig. 3.6). The 500 us long probe pulses are on resonance with the 6519, F = 4 <
6p3 /o, F ! = 5 transition, are circular polarized and have an actively stabilized intensity of
typically 0.9 mW/ em? & 0.8 Isnt. Only atoms in the F' = 4 state will scatter photons from
this probe beam, so the detected fluorescence signal is proportional to the number of atoms
in this state. Furthermore, since this is a closed optical transition, the atoms will still be

in the F' = 4 state after the pulse — as long as it is not to long or intense.

4-5 detection | | | |

3-4 repumping |-|

I I
611 612 613 614

Time after launch (ms)

Figure 3.6: Detection sequence.

During the 500 us time interval between detection pulses the atoms are illuminated by
light resonant with the 6sy/p, F' =3 < 6p3/2F’ = 4 transition. This pulse, which is 100us
long and has an intensity of ~ 1.5mW/ cm?, is sufficient to transfer all the atoms originally
in the F' = 3 state to the F' = 4 state via optical pumping. This means that all the atoms
are in the F' = 4 state when the second detection pulse is applied. Division of the two
detection signals therefore yields the normalized fraction of atoms originally in the F' = 4
state.

The signal to noise ratio of this detection scheme can be as high as 300/1. This is usually



38 CHAPTER 3. EXPERIMENTAL APPARATUS

not limited by intensity fluctuations of the probe beam, which is actively stabilized, but by
frequency jitter. It is also very important set the probe frequency correctly, almost directly
on resonance. While the noise is relatively insensitive to detuning towards the red (over a
few MHz), it increases dramatically for even small detunings towards the blue (over only
200 kHz).

Detalils

The fluorescence is captured using a 3-inch diameter, f=1 condenser lens (Melles Griot
01-CMP-121) that is mounted at approximately 90° to the probe beam and covers a solid
angle of about 47/100. The atomic cloud is first imaged (2:1) onto an adjustable, vertical
slit and then (1:1) onto a PMT (Hamamatsu R943-02). A long pass filter is mounted
in front of the PMT to reduce its sensitivity to room lights. The output signal of the
PMT — which is operated at bias voltages between 700 and 1300 Volt, depending on the
measurement — is first amplified by a current pre—amplifier (Keithley 427) and routed to
two gated integrators to capture and store the signal due to both probe pulses. Ultimately,
the output of the integrators is digitized and read into a computer using an 12-bit A/D
board (Keithley-Metrabyte DAS-16).

The horizontal probe beam is retro-reflected to minimize the deflection of the atomic
trajectories by light scattering forces. Its size and position can be controlled by a variable
circular aperture and an adjustable vertical slit (same type as in front of the PMT). The
optical repumping beam, actually the same one used for the MOT, has a much larger
diameter (~ 4c¢m) and illuminates the atoms from a different direction. The diameter of
the round aperture in the probe beam is usually set to 2.5 cm, except during time-of-flight
temperature measurements when a probe beam much smaller then the cloud size is useful.
The ~ (1 cm)2 photo-cathode of the PMT covers about the same vertical range, taking into
account the magnification of the imaging system.

The slits are used to select only a narrow vertical column of the larger atomic cloud for
detection. This improves the contrast of the interferometer (since these atoms are always
within the central, uniform intensity area of the Raman beams) and is also useful when
tracking down systematic errors due to coriolis forces (Sec. 6.5.1). Usually both slits are
set to a width of 6 mm, which reduces the number of detected atoms by another factor of
10 to approximately 3 x 10°.

The detection beam passes through the cesium source chamber, resulting in ~ 30%
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absorption. However, since this absorption is essentially constant it usually does not have
any adverse effects. A bigger problem is caused by the strong background fluorescence —
it can be bigger then some of the weaker signals — caused by thermal cesium atoms in the
detection region. We actually perform our detection in the region of the main chamber with
the highest cesium density simply because of the easy optical access. This probably should
be changed in the future.

3.3 Additional atomic fountain details

3.3.1 Cesium source

The current MOT differs from an earlier, otherwise very similar version [28] in that it is
not a pure vapor cell design. In the standard version, the MOT is loaded from a uniform
cesium background vapor in equilibrium with a cooled cesium reservoir. In our version, the
cesium vapor pressure is neither uniform nor in equilibrium with the cooled reservoir —
responsible is the arrangement of the systems vacuum pump, combined with its relatively
high pumping speed.

Figure 3.7 illustrates the situation: Cesium atoms originating from the supply in the cold
finger first form a relatively high vapor pressure (still lower then the expected equilibrium
vapor pressure) in the source chamber. They then enter the main chamber through a 1-
1/2 inch diameter tube, effectively forming a large diameter, high divergence atomic beam.
After only a few bounces these cesium atoms are removed from the system by the vacuum
pump, without causing a significant rise in the cesium vapor pressure in other parts of the
chamber. However, since they pass the capture volume of the MOT at least during their
first pass they can still be trapped.

The strongest evidence for this model comes from optical thickness measurements of
the cesium vapor. For a typical cold finger temperature of +5°C (—H5°C)i the equilibrium
vapor pressure [31] should be ~ 1.5 x 107 torr (~ 5x 1077 torr). However, optical thickness
measurements along a horizontal axis, going trough the source as well as the main chamber,
indicate an average vapor pressure of only ~ 7x 1079 torr, or ~ 2 x 10~8 torr if the cesium is
confined to the smaller source chamber only. A similar measurement along the vertical axis

of the main chamber even indicate an average cesium partial pressure of less then 10719 torr.

#The numbers in parenthesis are the new operating parameters after the 56 1 /s turbo pump was replaced
by the 30 1/s ion pump
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Figure 3.7: Cesium source.

3.3.2 Trapping magnet

The quadrupole trapping field is produced by two coils in anti ”Helmholtz” configuration,
wound directly on the outside of the vacuum chamber. The coils have a diameter of ~ 10 cm
and are spaced ~ 22 cm apart. Note that this is far from the “correct” anti Helmholtz spacing
of 5 ecm, which makes this configuration very inefficient: In this limit the current necessary
to achieve a specific field gradient at the center of the assembly increases as the 4th power
of the coil spacing — and the dissipated power as the 8th power. The coils therefore have
to be water cooled. They are made using 40 turns of 1/8-inch diameter copper tubing (~
1/16—inch diameter water channel) which has been isolated using high temperature (so they

can survive a vacuum chamber bake out), Teflon heat shrink tubing.

The coils produce a gradient of 0.14 Gauss/cm for a drive current of one ampere. The

water cooling is sufficient to allow currents up to 100 A, but the MOT is usually operated
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at 45 A and a gradient of 6 Gauss/cm. The current is supplied by a 100A / 10V power
supply (HP 6260b) operated in voltage control mode. It can be switched off in less then
1 ms using a parallel pair of MOSFET Power transistors (Motorola MTM50) in series with
the supply. An RC filter in the control line slows down switching process in order to prevent
the inductive spike from driving the transistors into avalanche mode. The switching time of
the circuit is fast enough to insure that it doesn’t dominate the decay time of the magnetic
field, which is then mostly determined by eddy currents in the vacuum chamber.

To produce a well defined MOT it is important that the quadrupole field of the trapping
coils is not disturbed. Originally the magnetic shielding assembly for the atomic fountain
was to close too the MO'T | resulting in a severely deformed trap, shifted by as much as 5 cm.
Raising the shield by another ~ 10cm solved this problem. Mounting the unshielded ion
pump directly to the main vacuum chamber is also problematic; it produces field gradients
up to 1Gauss/cm at the location of the trap, but so far this effect happens to be just barely
tolerable.

In addition to the trapping coils the setup includes three additional coil pairs to com-
pensate Earth’s magnetic field and, for short periods, provide a bias field for magnetic state
selection. The system was originally designed to use a flux gate magnetometer and active
feedback to deal with the effects of a cryogenic, 10 Tesla magnet located in a nearby labora-
tory, only ~ 5bm from our setup, and able to produce fields of up to 100 mG at the location
of the trap. However, in the end it turned out to be easier to coordinate the schedules of

both experiments.

3.3.3 Laser system and optics
Ti:Sapphire laser

Figure 3.8 shows the laser system for the atomic fountain and the state sensitive detection.
An Argon-lon laser (Coherent Innova 100 or Innova 400) pumped Ti:sapphire ring laser
(Coherent 899-21) provides all the light near the 6s1 /9, F' = 4 < Op3p, F =7 transitions
of the cesium Dy line at ~ 852 nm. This includes beams for trapping, optical pumping,
detection and state selective blow-away. The single frequency, infrared output power of the
Ti:sapphire laser is typically 2.0 - 2.5 Watts for 15 Watts of multi-line-visible pump power.

Because of concerns about vibrations, the Ti:Sapphire and Argon-lon laser are installed

on a separate table. The light is the transfered to the main optical table using a 2 m long
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single-mode, polarization preserving optical fiber with pre-installed collimation lenses (Oz-
optics LPSC-03-852-5/125-P-0.86-1.3-6DEG-1-3-2). By using a telescope for proper mode
matching we are able to achieve a very high coupling efficiency and deliver 75 % of the laser

output power to the optical table.

Using the optical fiber also comes with the enormous benefit of decoupling most of the
setup from pointing fluctuations of the laser. This means that most of the optics after the
fiber, if properly mounted, never have to be realigned. This property alone, despite the
small power loss, would probably justify the use of the fiber, even if the Ti:Sapphire laser
were located on the optical table itself. The arrangement is also extremely stable and needs
very little realignment even at the input side: For daily operation only the input telescope
mirrors, the birefringent filter and the thin-etalon need to be adjusted — with no need to
touch up the fiber coupling. Major realignments are only necessary once every few months,

mostly after cleaning the intra-cavity optics of the Ti:Sapphire laser.

FM saturation spectroscopy lock

The laser frequency is stabilized relative to the FF = 4 < F/' = 4, F = 4 < F' =5
crossover line using a standard FM saturation spectroscopy lock [32]. A double-pass AOM
in the saturation beam of the lock provides a tunable offset which is usually set at 67 MHz
to place the laser output frequency 59 MHz below the FF = 4 «— F’ = 5 transition (Fig.
3.9). Some features of this lock that are worth pointing out: (a) No chopping of the
saturation beam is used to eliminate a possible Doppler background. Instead, we find that
this background is already low in the neighborhood of the 4/5 crossover resonance and can
be made to vanish almost completely by slightly adjusting the probe beam polarization. (b)
The lock has a relatively high bandwidth of ~ 15kHz. To achieve this a second, fast control
path is implemented by adding a voltage to the output of Ti:Sapphire lasers internal cavity
lock photodiode. (c) The lock has a hold feature which is used to increase the molasses
detuning during the final stages of the fountain launch. The lock receives a hold command.
Simultaneously, an additional feed-forward voltage is added to the fast control output (see
above). This decreases the laser output frequency by ~ 40MHz. The hold command
is removed after a few milliseconds, once the launch is complete, and the lock recovers

without problems.
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Figure 3.8: Schematic of laser system. All laser beams (trapping, detection, 4-5 blow-
away) close to 6510, F = 4 < 6P3/2,F’ = ? transitions (see Fig. 3.9 for energy level
diagram) of the cesium Ds line at ~ 852nm are derived from a Ti:sapphire laser. All laser
beams (repumping, 3-2 blow-away, Raman frequency reference) close to 65 2 F =3
6P3 /9, F' " = 7 transitions are derived from a distributed—Bragg—Reflector (DBR) diode laser.
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3.3. ADDITIONAIL ATOMIC FOUNTAIN DETAILS 45

ZSDR-230 ZFSW-2-46
PIN diode GaAs RF-"switch"

i ZFL ZHL-3A
50 0 RF switch ZFM-2 (use only one channel) 500-HLN RF amplifier

Mixer RF amplifier
<|—E§9— RF 2
RF OUT ."‘ IN OUT+>+>% AOM 1

RF 1
TTL CTRL
40 MHz zFsc-2-2 ' y
ower

fixed  Spiitter

comp comp
C >_)' =

Y

ZSDR -425 ZFSW-2-46
PIN diode GaAs RF-"switch" ZFL ZHL-3A
RF switch ZFM-2  (use only one channel)  500-HLN RF amplifier
36 MHz Mixer RF amplifier
. N
adjustable PIRF 4
IN out AOM 2
\/\ >—RF 3
- CTRL
50 Q RF OUT y
RF 2 2kQ
500  LITLi TTL2 comp

A A

AOM 1 : upward propagating beams
comp| |comp AOM 2: downward propagating beams

Figure 3.10: Circuitry for controlling launch frequencies. The GaAs RF—“switches” are used
as variable attenuators. Compared to double balanced mixers they have the advantage that
the attenuation does not depend on the RF input power, which is important for this circuit.

Trapping beams

There are two sets of trapping beams (3 upper beams, 3 lower beams), each derived from
a single precursor beam containing about 50% of the total Ti:sapphire laser power after
the fiber. Both beams can be controlled using single-pass AOM’s. While the AOM for the
lower beams always operates at a fixed frequency of 40 MHz, the frequency of the other one
can be tuned to generate the moving molasses during the fountain launch (see Fig. 3.10 for
control circuit). The AOMs are backed by a pair of mechanical shutters (nm LST 18) to
prevent eventual leakage light from disturbing the interferometer measurement. Each beam
is then expanded by a factor of 5, using a spatially filtered telescope, before being split into
three equal intensity components by plate beam splitters. Each of the components is the
converted to circular polarization by A/4 wave plates and expanded by another factor of 8,
using independent telescopes. Finally the beams are routed to the MOT using large gold

coated mirrors to preserve their circular polarization.
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Detection and blow—away beams

The detection and blow-away beams are derived from the same source. A small fraction
of the Ti:Sapphire light is split off and frequency shifted a first time by a double—pass
AOM operating around 89 MHz. This frequency can be tuned to put the detection beam
exactly on resonance with the F' = 4 « F’ = 5 transition. It then passes through another
AOM, operating at a fixed frequency of 120 MHz and used to switch the light, as well as
actively stabilize its intensity. To perform the latter task, a small fraction of the 1st order
light is detected by a photo diode and held constant by a PID feedback circuit (~ 100kHz
bandwidth) controlling the RF-power driving the AOM. The feedback is only used during
detection, while for a blow-away pulse the intensity is simply set to maximum.

The beam is then spatially filtered and split into two components, one for the detection
and one for the blow-away beam. Both beams would always be on at the same time, but
two mechanical shutters (Uniblitz L.S-2) select one at a time. The detection beam is then
expanded, made circular polarized by passing through a polarizer followed by a A/4 wave
plate and apertured before it enters the vacuum chamber horizontally (see above). The
blow-away beam is routed to the top window of the vacuum chamber, where it is focused on
a small pick-off mirror (almost clipping the Raman beams) which then reflects the expanding

beam down through the center of the magnetic shield.

Optical pumping beam

Another small fraction of the Ti:sapphire power is used to provide light on resonance with
the ' = 4 «» I/ = 4 transition, which can be used to optically pump atoms into the F' = 3
hyperfine state (see for example Sec. 3.2.2). This beam passes through a double pass AOM,
operated at 96 MHz, which can pulse the light on or off and also shifts its frequency onto

resonance. This AOM is also backed by a mechanical shutter.

DBR diode laser

A Distributed-Bragg-Reflector (DBR) diode laser provides all the light near the 6s; 2. F =
3 < 6pg/9, ' =7 transitions. This includes the repumping light applied while loading the
MOT and during detection, as well as one of blow-away beams used during preselection.
Additionally, the absolute frequencies of the Raman lasers are also referenced to the DBR

laser by means of a frequency offset lock.
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The DBR laser (SDIL-5712-H1) can provide up to 100mW of stable, single frequency
output power (we usually operate at 80 mW). It is well behaved and easily and continuously
tunable over a large frequency range of several nm, simply by adjusting current and tem-
perature. This convenience comes at the price of a substantially larger linewidth (measured
as ~ 8 MHz using a heterodyne method) compared with an external cavity diode laser. It
is also very sensitive to optical feedback, requiring an optical isolator in front of the laser
which also has to be mounted very stably to prevent small reflections from its front window
to disturb the laser. While the output beam is slightly elliptical and astigmatic, we found

it unnecessary to correct these for our purposes.

Fast dither saturation spectroscopy lock

The DBR laser is locked relative to the F' = 4 «+» F’ = 4 line using saturation spectroscopy
and a fast dither lock. Again a double pass AOM in the saturation beam provides a tunable
offset, but in this locking scheme it also does double by providing the frequency dither for
the lock. This AOM is driven by the frequency quadrupled and amplified output of an DDS
synthesizer (SRS DS345), which also provides the frequency dither (£6 MHz frequency span
after quadrupling, 10 kHz modulation frequency). A lock-in amplifier (SRS 510) is the used
to extract the lock error signal. The AOM center frequency is usually set at 110 MHz,
placing the frequency of the DBR laser this far below the ' = 4 < I/ = 4 transition.

The advantages of modulating only the saturation beam, compared with the standard
practice of simply modulating the laser itself, are twofold: First, there will be no mod-
ulation sidebands on the main laser beam. Additionally, this method is intrinsically free
of the Doppler broadened background that is usually associated with a modulated probe
beam. One possible problem with this type of lock is its sensitivity to the alignment of the
double pass AOM. Any amplitude modulation or slight beam movement associated with the
dithering will generally result in shift of the lock-point. By doing spectroscopy on the cold
atoms in the fountain, we actually find that the lock frequency is usually offset by ~ 1 MHz
from its proper value, and that this offset may drift around by a few hundred kHz.

Repumping beam

Most of the DBR light is used for repumping. A single pass AOM operating at 110 MHz is
used to control the repumping beam intensity. It also up-shifts the light’s frequency back

into resonance with the ¥ = 3 < F’ = 4 transition. The repumping beam is then spatially
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filtered and nearly overlapped with one of the trapping beams. This is done by focusing
it onto a pick-up mirror which is placed close to the focus of the trapping beam’s final

expansion telescope.

Blow—away beam

The main DBR beam is also used to generate a blow—away beam in resonance with the
closed ' = 3 <« F’ = 2 transition. In that case the beam is switched and down-shifted
in frequency using a double pass AOM operating at 121 MHz. It is then spatially filtered,
routed to the vacuum chamber and is used to illuminate the atoms from the side, through

one of the large windows.

Controlling stray light

The atom interferometer measurement is very sensitive to stray light close to resonance.
For that reason, a large portion of the laser system is surrounded by boxes made from
black cardboard, with only a few, small holes for the laser beams. To decrease the leakage
light through the switching AOM’s, they are usually combined with spatial filters and RF-
switches to turn off the drive power completely. This results in leakage light levels which
are typically less then 1077 times of the input power. Since this might still be too much,
all the AOM’s are additionally backed by mechanical shutters.

3.3.4 Microwave pulses

The microwaves used during the preselection process are introduced into the system using
a microwave horn mounted in front of one of the 4-1/2 inch viewports. They are generated
by mixing the frequency doubled output of microwave synthesizer (Gigatronics 600) with a
lower frequency generated by a DDS synthesizer (HP 33120 A). Both synthesizer are phase
locked to a 10 MHz Loran-C reference signal. Before going to the microwave horn, the signal
is amplified to ~ 400 mW by a high gain microwave amplifier (JCA 605). While the pulses
are primarily controlled using GaAs RF-switches at the output of the DDS synthesizer,
this is not sufficient to prevent interference with the interferometer measurements. We
therefore also gate the supply voltage for the microwave amplifier, achieving surprisingly

fast switching times of only a few us.
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3.3.5 Computer control and timing

This pulsed experiment involves a rather complex sequences of events and therefore requires
a sophisticated control system, consisting of two computers in combination with several

pulse generators and arbitrary waveform synthesizers.

Data acquisition computer

One of the computers (IBM compatible, 50 MHz 486, DOS 6.2) is responsible for data
acquisition and controls most aspects of the experiment. It is fitted with a GBIB board
(Keithley Metrabyte KM-488-DD) and an Multi function 1/O board (Keithley Metrabyte
DAS-16). The GBIP board is used to initialize the many different devices (synthesizers,
pulse generators, oscilloscopes) necessary to run the experiment and then to scan several
parameters (frequencies, pulse times) during data acquisition. Several digital lines of the
multi function 1/O board are uses for timing and synchronization purposes but its main
function is to digitize the atomic fluorescence signal during detection. The software con-
trolling the experiment is written in Microsoft QuickBasic, while some of the data analysis
programs are implemented in Fortran and use least-squares fit routines from the IMSL

numerical library.

Timing computer

The second computer (IBM compatible, passive backplane VESA system with 14 expansion
slots, 66 MHz 486DX2, Windows for Workgroups 3.1) is used to implement a dedicated
timing system for most of the experiment. The system was originally developed by Todd
Gustavson and then slightly modified for use in our experiment. It uses four counter/timer
boards (National Instrument PC-TIO-10) to provide up to 40 timing pulses with 10 us
resolution (for a maximum cycle length of ~ 1.2s). These pulses are then used to update
the outputs of three 12-bit D/A boards (National Instruments AT-AO-10), always loading
the next output value from their built in, cyclic hardware buffer. This providing us with 30
analog output lines to control the experiment. The hardware is controlled by a combination
of low level routines, written in C, and a user-friendly graphical MATLAB user interface.
A nice feature of this system is that it is almost completely implemented in hardware.
Thanks to the build-in hardware buffers of the analog output boards, no software interven-

tion is required anymore after everything has been set up initially. This leaves the main
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computer free for other purposes, mostly on-the-fly data analysis. To facilitate this mode of
operation, we actually have the control computer write newly acquired data onto the hard
disk of the timing computer immediately, using an Ethernet network connection (its own
hard disk is not externally accessible, since it is running under DOS). This arrangement has

proven to be very effective and useful.

Additional timing hardware

Some of the more critical timing signals (Raman pulses, microwave pulses), or those that
need to be scanned (Detection time for TOF measurement, Raman nd microwave pulse
length to measure Rabi frequency) pulse are still provided by a set of pulse generators (SRS
DG535) and arbitrary waveform synthesizers (SRS DS345). These are generally phase
locked to an 10 MHz Loran-C frequency reference and controlled via GPIB by the data
acquisition computer. One of the pulse generators is also used as the master trigger for
the experiment, mostly because it offers a line trigger feature that can be useful for certain

measurements.

3.4 Interferometer

In this section we present the system for generating the laser pulses which form the beam
splitters and mirrors of the atom interferometer. We also describe the magnetic shielding

assembly surrounding the measurement region.

3.4.1 Phase-locked diode lasers

There are several possible ways to generate the two optical frequencies required for stim-
ulated Raman transitions. They include using high frequency acousto—optic modulators,
either directly (at 1.7 GHz for sodium [33]) or in combination with injection locked slave
lasers (at 9.2 GHz for cesium [34]). Another option is to use the sidebands generated by a
high frequency electro—optic modulator (at 1.7 GHz for sodium [11], at 9.2 GHz for cesium
[35]), or even by direct current modulation of a single frequency diode laser.

For this experiment we choose to generate the Raman light by phase—locking two external
cavity diode lasers [14, 36]. The general idea is to detect the beat note between the two
independent diode lasers using a fast photo diode and compare it to a stable RF-reference

frequency. Under certain conditions it is then possible to phase—lock them together using a
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electronic feedback loop (PLL). To make this work it is essential that at least one of the two
diode lasers has a frequency modulation bandwidth substantially larger than either of their
intrinsic line widths. It must also be possible to keep all time delays within the feedback

loop sufficiently short.

External cavity diode lasers

While diode lasers generally have large frequency modulation bandwidths, their intrinsic line
widths are usually too large to allow phase-locking (This is true even for DBR diode lasers).
The first goal is therefore to reduce the laser linewidth, and it can be readily achieved
by using an external cavity configuration. We start with two laser diodes (SDL-5410-G1,
100 mW, GaAlAs) and build the external cavities using gold coated, holographic gratings
in Littrow configuration. The output beams then have short term linewidth substantially
smaller than 1 MHz, and we usually extract 80 mW of power. To improve the reliability and
long term stability of the phase-lock, we stabilize the temperature of the external cavity
in addition to that of the diode and use a lot of thermal insulation material. (Diode laser
current and temperature controller are self made, cavity temperature controller: Wavelength
Electronics TEC-5000)

In addition to the normal current modulation capabilities afforded by the diode current
controller, we add an additional fast modulation port to the diode laser that is going to be
actively phase locked (slave laser). This is done by simply bringing the modulation signal
as close as possible to the diode before adding it to the diode current via AC-coupling. The
frequency response of this current modulation onto the laser frequency, in both amplitude
and phase, was measured previously by Kurt Gibble (for SDL and STC laser diodes). His
data is presented in Fig. 3.11.

Phase lock

A fairly complete schematic of the phase-lock system is given in Fig. 3.14. The beat note is
detected is detected using a fast photo diode (Antel S2), amplified and immediately mixed
down to a convenient intermediate frequency. The local oscillator frequency for the mixer is
itself tunable and its generation will be discussed in Sec. 3.4.2. The intermediate frequency
is once again amplified and then distributed to various feedback components and monitoring

equipment.
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Figure 3.11: Frequency modulation response of diode lasers. Measured by Kurt Gibble for
STC and SDL laser diodes.

The phase-lock system actually uses three different feedback paths: The fast path feeds
the output signal of an analog phase detector directly back into the previously mentioned,
fast modulation input of the slave laser. An RF-attenuator and compensation filter can be
used to optimize the feedback. The filter is especially important since it provides a certain
amount of lead compensation and increases the maximum feedback bandwidth substantially.
The intermediate and slow feedback paths both obtain their error signal from a digital phase
detector circuit (Fig. 3.12), which has better low frequency properties than the analog mixer
and provides a bigger capture range for the phase-locked loop. The intermediate feedback
path is implemented using the DC-modulation input of the diode laser current controller,

while the slow path uses a piezo to adjust the length of the external diode laser cavity.

The crossover points between the three feedback bands are typically 25 Hz and 550 kHz,
while the total feedback bandwidth is approximately 2.0 — 2.5 MHz. While in principle it
would be possible to generate all the signals independently, we instead choose to use the

error signal of the intermediate path as the input for the piezo circuit. This automatically
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Figure 3.13: Phase noise of Raman laser beat note. Measured by Kurt Gibble for two phase
locked STC laser diodes.

eliminates gain peaking and resonances at the crossover point of these two feedback bands.
On the other hand, resonances are visible at the crossover point between the fast and
intermediate bands. Figure 3.13 shows a typical beat note of two phase locked Raman
lasers, with 99.8 % of the total laser power in the carrier. While this particular data was
taken by Kurt Gibble who used two STC diode lasers, the signal is very similar for the
current setup using SDL lasers. One noticeable difference is that the noise sidebands are
substantially narrower, and slightly bigger, for the SDL lasers — probably because of their

higher output power and accordingly lower intrinsic linewidth.

3.4.2 Frequency control

The relative phase of the Raman beams provides the reference against which all interfer-
ometer phase shifts are measured. Precise control of the Raman laser frequency difference
and relative phase are therefore of ultimate importance — any noise in the Raman phase
will directly translate into noise of the gravity data, and failure to control it properly could
easily result in systematic errors in the measured gravity value. Further complications arise
because the relative frequency and phase of the Raman lasers are not held constant during

an actual gravity measurement. Instead, as discussed in the theory section (2.2.3), they
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are adjusted to compensate for most of the gravity induced interferometer phase shift, so
that only a small residual phase difference has to be derived from the atomic signal. Figure
3.14 presents the system that is used to control the Raman frequency difference and phase

relationship.

All frequencies are ultimately derived from a 10 MHz Loran-C (SRS FS 700-01) fre-
quency standard, which itself is ultimately referenced to atomic clocks. The Loran-C re-
ceiver was modified (by Brenton Young [16]) to address power supply related problems and
reduce phase noise at 60 Hz harmonics by over 20 dB. With these modifications, the short
term stability (1 s Allan Variance) of the reference was measured to be ~ 1 x 10712,
significantly better then the specification of 5 x 10712, There are still some problems with
noise spikes during Loran-C updates which occur every 0.1 seconds. The frequency stability
is also relatively poor at timescales of a few hours. So far, these problems didn’t seem to
have any effect on the interferometer performance, but they might become important in the

future.

Microwave generation by frequency multiplication

The 10 MHz reference frequency is multiplied up to 9.18 GHz using a two-stage frequency
multiplier chain, identical to the ones used in FTS (Frequency and Time Systems) atomic
clocks. The first stage provides a clean, single frequency output signal at a 180 MHz.
The second stage then uses a comb generator to produce many high order harmonics of
the 180 MHz input frequency. One particular component, the one at 9.18 GHz, does then
serve as our microwave frequency reference. Since it is generated using a straightforward
multiplication process, its phase noise is almost completely determined by that of 10 MHz

input signal.

We then generate a tunable microwave source by phase—locking a DRO (dielectric res-
onator oscillator) to the 9.18 GHz reference signal, with an adjustable, synthesized offset
frequency frrk of typically 40 MHz. This phase lock has a bandwidth of ~ 300kHz and
uses a digital phase detector circuit very similar to the one used for the diode laser phase
lock. The output of then mixed with beat note signal from the Photodiode to generate
an intermediate frequency. The diode laser phase lock will then keep regulate the laser
frequency to make the intermediate frequency equal to another synthesized reference fre-

quency fsrs of typically 52.631,770 MHz. Overall, the Raman laser frequency difference is
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Figure 3.14: Raman laser phase-lock and system for controlling the Raman difference fre-
quency and phase.
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given by the formula

fRaman = 9.18GHz — frex + fsrs. (3.1)

It is obvious that in principle the Raman frequency can be controlled by changing either one
of the two frequencies, frrk or fsrs. However, because phase shifts can lead to systematic
errors, it is wise not to change the frequency fsrg to much: The diode laser phase lock
with its multiple feedback paths is very complex, and changing its intermediate frequency
can easily result in rather unpredictable phase shifts. On the other hand, the DRO phase—
lock has only one feedback path and behaves in a much more predictable way. One should
therefore use its reference frequency frrk to control the Raman frequency.

Ideally, one would perform a gravity measurement by continously sweeping the frequency
fTEK, and thereby the Raman frequency, to exactly cancel the gravity induced Doppler of
the atom. The exact g—value can then be calculated from the required chirp rate a. For
a gravitational acceleration of 9.8 m/s this chirp rate would be ~ 23.0MHz/s and a total
interferometer time of 320 ms would require a 7.36 MHz frequency change. Regrettably,
it is almost impossible to find a frequency source to generate such a chirp with sufficient
resolution and accuracy. We have therfore implemented two slightly different alternative
schemes.

The first scheme makes use of the fact, that for sufficiently short Raman pulses a fre-
quency chirp during the pulse itself is not important — only the accumulated phase between
pulses matters. [t is therefore possible to simply switch between three fixed Raman fre-
quencies, a different one for each interferometer pulse, and adjust the step size Af in order
to best approximate the chirp rate «. If the timing of the frequency changes is exactly
controlled and known, then it is possible to calculate the accumulated phase. This phase
can also be fine tuned without changing the frequency step size, but by somehow shifting
the phase during one of the pulses.

There are a number of important points to consider when implementing this method.
The most important one is the correct synchronization between pulse timing and frequency
changes in the case of finite pulse lengths. It turns out that the absolute time of the
frequency changes is not important, only the time interval between them. And this interval
has to be identical to T+ 27, and not to the dead time between pulses, T'. The reason
becomes most obvious when the interferometer sequence is modeled as two back to back
ramsay sequences — 1T + 27 then is the time interval any pair of equivalent points in the

two partial sequences. Figure 3.15 illustrates the important timing relationships.
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Figure 3.15: Timing relationship between interferometer pulses and frequency changes.
The acceleration induced Doppler shift causes a continuous change of the atomic transition
frequency. To compensate, the Raman frequency difference is adjusted in discrete steps.
The exact delay 74 of these frequency changes relative to the Raman pulses is not important,
but they have to be spaced by exactly (T + 27).

All these frequencies are generated by a Tektronics AFG-2020 DDS (direct digital syn-
thesis) synthesizer, which is also phase—locked to the Loran-C frequency reference. It has
a 30-bit frequency resolution, which at a sampling rate of 250 MHz should rightfully cor-
respond to ~ 0.23 Hz frequency steps. However, for reasons only known to the designers
of the device, frequency control commands have to be given in multiples of 0.5 Hz, further
limiting the resolution and requiring a complicated rounding algorithm to figure out the ac-
tual output frequency. The changes in the output frequency can be implemented using the
synthesizers FSK (frequency shift keying) modulation mode, which offers 10 us resolution
for the time between changes. This time is also referenced to the external 10 Mhz reference,
which absolute essential to make this method work. The relatively course frequency step

size somewhat limits the phase resolution of the interferometer measurement. However, it
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Figure 3.16: Frequency changes of DDS synthesizer. Frequencies fi,fo and f3 are in reso-
nance during the three Raman pulses. To allow a higher resolution in the relative phase we
change the synthesizer frequency after the first and second pulses by a small amount A f
over a period of (T'+27)/N, where N is typically chosen to be 20. The phase difference A¢p
is then given by the formula shown.

possible to work around this problem by using more than 3 frequencies and for shorter time
intervals. This is illustrated in Fig. 3.16, which also give the formula for the total phase
shift.

If the single Raman pulses become too long, then it is not possible anymore to ignore
the gravity induced frequency chirp while the pulse is on. Our second scheme therefore
has modifications to compensate for this chirp. This capability is also useful for systematic
error checks, even when the Raman pulses are sufficiently short. We make use of the fact
that we actually have a second handle to control the Raman frequency: The diode laser
reference frequency fsrg. Instead of holding it fixed, we use another frequency doubled
DDS synthesizer (SRS DS-345) to sweep it for 1 ms at the correct chirp rate. A second
SRS synthesizer, this one operating in square-wave burst, is used to repeatedly trigger this
process once every 2ms. Again, it is essential that both synthesizers are locked to the
external 10 MHz Loran-C reference. Since these chirps only span a short frequency interval,
and are furthermore identical for all pulses, the phase shifts in the diode laser circuitry are
not a problem. This procedure guarantees that all the Raman pulses are correctly chirped,
as long as they are applied during the correct 1 ms time intervals. Using this method also
restricts the time T + 27 to multiples of 2ms, but if this conditions is fulfilled the total
phase shift is still given by the formula in Fig. 3.16.

Even though the velocity preselection pulse is not strictly a part of the interferometer
sequence, it is generated by the same circuitry. Because of its long duration, it is always
necessary to provide chirp compensation for this pulse. This is achieved by using another

frequency doubled SRS DDS-synthesizer in sweep mode to provide the frequency frgx. An
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RF-switch is used to switch between this synthesizer and the Tektronics AFG-2020.

While the absolute frequency of the Raman lasers is only of secondary importance, is
has to be known to at least the targeted accuracy for the gravity measurement. The master
laser frequency is therefore locked to that of the repumping diode laser. This is done by
detecting their beat note on a fast photo diode, mixing it with an adjustable frequency
fuar in the low GHz range, and then locking the resulting intermediate frequency relative
to another reference frequency frrx using a frequency lock (here simply a low gain version of
our digital phase lock circuit). The frequency fyag is typically 1.040 GHz and is generated
by a frequency doubled Marconi synthesizer. We usually use a fixed frequency frrx of
80 MHz, generated from the 10 MHz Loran-C signal in three cascaded doubling stages. The
absolute frequency of the master laser, including a final frequency shift faon due to the

switching AOM, is then given by

fmaster = faea — 110MHz —  fumar +  freix + faom (3.2)
= f3.4 — 110MHz — 1040MHz + &8O0MHz + 80MHz,

where f3..4 is the absolute frequency of the 6sy /9, F' = 3 <> 6pg /5, F' = 4 optical transition.

Also see Fig. 3.9 for a illustration of all the atomic energy levels and laser frequencies.

3.4.3 Pulse generation

Another subsystem is responsible for controlling the timing and intensity of the Raman
pulses. The actual switching of the light is done by an AOM operated at a fixed frequency
faom of 80 MHz, generated from the 10 MHz Loran-C signal in three cascaded doubling
stages. The amount of RF-power driving this AOM controls the Raman beam intensity. It
can be set to 3 different values (OFF, LOW for interferometer pulses, HIGH for preselection
pulse) using a network of RF switches (see Fig. 3.17. All the timing signals for these switches
are generated by a set of synchronized pulse generators (SRS DG 535) and several TTL
logic gates. One of the pulse generator outputs is used to trigger all the hardware involved

in generating the Raman frequencies.

3.4.4 Optics and beam path

Figure 3.18 gives an overview of the optical system for Raman beam generation and delivery

to the atoms. The diode laser output beams are first circularized, overlapped using a
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Figure 3.17: Circuitry for switching and controlling the intensity of the Raman beams.
The Raman beams are collimated (~ 0.8 mm ) when passed through the AOM (Isomet
1205-603F), resulting in a rise time of ~ 200 ns.

polarizing beam splitting cube and then coupled into a 3.9 m long, polarization preserving
optical fiber. This fiber (Oz optics LPC-04-852-5/125-P-0.86-3.9AS-40-1-3-3) comes with
identical collimation already installed on both ends, and we usually achieve a coupling
efficiency of ~ 60%. The output beam is first passed through another polarizing beam
splitting cube, to insure well defined polarization, and then a small fraction is picked up by
a high quality beam sampler and sent to a fast photo diode to generate the beat note for
the phase-lock. The collimated main beam then passes through a 80 MHz single pass AOM

which is used to generate Raman pulses of controlled intensity.

The first order output beam of the AOM is then expanded to a diameter (;1; intensity
contour) of ~ 2.7cm. The beam expansion telescope is made using high quality singlet
lenses of 7.5c¢m and 150 cm focal length. Optionally, a 75-micron pinhole can be placed at
the telescopes internal focus for spatial filtering. The output beam is carefully collimated
using a shear-plate collimation tester (Melles Griot 009-SPM-003). It is then routed to the
bottom window of the vacuum chamber using several high quality, gold coated mirrors. T'wo
of these mirrors are mounted on translation stages, which allows for two dimensional beam
movement without angular displacements. The whole beam path after the switching AOM

is enclosed in lucite tubing in order to prevent wavefront deformations due to air currents.

The Raman beams then pass vertically through the vacuum system and the atom inter-
ferometer measurement region. They might first have to pass through an optional polarizing
beam splitting cube before entering the vacuum chamber. The indium sealed entrance and
exit viewports are both self made, using high quality AR-coated windows (fused silica,

2-inch diameter, 3/8-inch thick, A/20, 2arcsec parallelism). At the top of the vacuum
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Figure 3.18: Raman lasers system.

chamber the Raman beams are retro reflected off a high quality, vibration isolated mirror
(see Sec. 3.5.1). It also has to pass twice through high quality A/4 — wave plate (zero-order,
airspace, 2-inch diameter, A\/20, AR-coated, manufactured by Special Optics), which flips
the beams polarization by 90 degrees. After leaving the vacuum chamber again, the beam
is deflected onto a beam-dump if the optional polarizer is installed, otherwise continues to

retrace its original path all the way back to the polarizer in front of the optical fiber.

This setup allows one to drive Doppler sensitive Raman transitions in a (lin L lin)
configuration: One of the two frequency components in the upward propagating beam
together with the other, orthogonally polarized frequency component in the downward
propagating beam can drive such a transition. All other combinations don’t contribute
because of polarization selection rules and detuning from the Raman resonance condition.
It is also possible to drive Doppler insensitive (6™ — o*) Raman transitions, simply by
inserting another A/4 — wave plate into the beam before it enters the vacuum chamber and

blocking the retro reflection.
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3.4.5 Interaction region

The whole interferometer sequence takes place while the atom is inside a magnetically
shielded interaction region. This is necessary since inhomogeneous magnetic fields can also
cause an interferometer phase shift (see Sec. 6) and cause errors in the gravity measure-
ment. The magnetic shield (see Fig. 3.19) consists of four cylinders made from 1 mm thick
Hipernom. All but the innermost cylinder are also fitted with caps with 1.5inch diameters
holes. This shielding assembly should have theoretical radial and axial shielding factors of
1.6 x 107 and 2.9 x 107, respectively [37]. The fourth layer of magnetic shielding is only
necessary because the MOT trapping coils can produce very strong (~100 Gauss), pulsed
magnetic fields very close to the magnetic shield. In order to generate a uniform, vertical
bias field a 10.5inch long solenoid is installed inside the innermost shield. It consists of two
layers of 1 mm diameter, Kapton coated wire which is wrapped on an aluminum core 1.5
inch in diameter. The solenoid can also be used for degaussing the two innermost magnetic
shield layers.

The uniformity of the magnetic bias field is the quantity ultimately important for the
experiment and we can actually measure it using the atoms in the atomic fountain. In
order to do this, atoms in all possible F' = 4, mpr =7 Zeeman sublevels are launched with a
slightly higher velocity than usual, taking then onto trajectories with reach all the way to
the top of the vacuum chamber. We can then use Doppler insensitive Raman transitions to
take Zeeman spectra at different points along atomic trajectories and use them to calculate
the magnitude of the local magnetic field. The results for weak and strong bias fields are
shown in Fig. 6.3. For strong fields the inhomogeneities are dominated by imperfections

bias field generation, while the cause of the inhomogeneities at low field is not obvious.

3.5 Vibration isolation and tilt control

All atom interferometer measurements are easily perturbed by relative motions of their beam
splitters and mirrors. It is therefore essential to implement these elements in an intrinsically
stable way and protect them from external vibrations. For inertially sensitive interferome-
ters, such as ours, it is furthermore necessary to protect against common movements of all
elements, which is substantially harder to achieve. For our light pulse interferometer these
requirements translate into the need to control and protect from disturbance the frequency

and phase of the light field. Using stimulated Raman transitions is highly beneficial since
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it replaces the resulting extremely tough requirement of milli-Hertz level laser frequency
stability with a more easily achievable one for the difference frequency. Vibrations remain
a problem since any movement of mirrors and other optical elements will induce Doppler
shifts and thereby disturb the light.

Another peculiar complication arises for gravity measurements, since the equivalence
principle explicitly states that locally it is impossible to distinguish between gravitational
fields and accelerations of the measurement apparatus. Practically, this quandary is usu-
ally resolved by the fact that vibrational accelerations become negligible at frequencies well
0.1 Hz and can be eliminated by low-pass filtering the raw data using a time constant much
longer than 10s. This method is indeed used by classical spring/mass-type gravimeters,
but it does not work for our atom interferometer measurements for two reasons. Most im-
portantly, the measured signal is not a linear function of acceleration but takes the form
of interferometer fringes. Large vibrations, corresponding to one or more fringe spacings,
will therfore severely degrade the signal in a way that can not be compensated for. Fur-
thermore, even small vibrations at high frequencies cannot simply be filtered out because
the measurement is pulsed or, in other words, sampled. The Nyquist theorem then states
that after sampling it is impossible to distinguish high frequency signals from low frequency

ones, much less remove them by filtering.

The purpose of a vibration isolation system is therefore twofold. First, it has to ensure
that any remaining vibrations are sufficiently small to keep the signal within a single in-
terferometer fringe. This translates into allowing only displacements of much less than a
single optical wavelength during a single interferometer sequence (~ 320 ms). Furthermore,
the vibration isolator has to act as an anti-aliasing filter to reduce any vibrational noise
above the Nyquist frequency (~ 0.4 Hz for 1.3 s between measurements) to acceptable levels
before sampling. Standard optical table pneumatic isolators, while working nicely at high
frequencies, do not provide any isolation at the required low frequencies and actually add
noise around their typical resonance frequencies of 2Hz. The situation therefore calls for
a system with a much lower resonance frequency. Given the properties of the geological
background noise — there are particularly strong vibrations, called micro—seism, at periods

of ~ 5 and ~ 8seconds — the resonance frequency should be substantially less than 0.1 Hz.

Independent of the exact nature of the vibration isolation system there are two different
approaches (Fig. 3.20) to achieve stable Raman light fields. One options is to route the two

beams to the interaction region independently. This has the advantage of being very clean
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Figure 3.20: Different schemes for vibration isolation. (a) Without retro—reflection. (b)
With retroreflection. Depending on their propagation direction different frequency com-
ponents (light, dark) either do (solid) or do not (dotted) drive Doppler sensitive Raman
transitions.

and avoiding some potential systematic errors due to standing wave effects. The disadvan-
tage of the scheme is that it requires extreme stability of all optical components relative to
each other and vibration isolation of the complete system. In our setup we employ the sec-
ond method. Here, the two Raman beams are always co-propagating and are retro-reflected
after passing through the interaction region. One frequency component in the upward prop-
agating beam together with the other one in the downward propagating beam will drive
Doppler sensitive Raman transitions. All other combinations do not contribute because of
polarization selection rules and detuning from the Raman resonance condition. This scheme
has the advantage that the vibrations of almost all optical components are common mode
for both beams and cancel. The only exception are motions of the retro-reflection mirror

which is therefore the only element that needs to be isolated against vibrations.
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Figure 3.21: Vibration isolator schematic.

3.5.1 Vertical active vibration isolation

Since the interferometer is mainly sensitive vertical accelerations a single axis low frequency
vibration isolation system is sufficient to achieve major reductions in measurement noise.

Passive vertical vibration isolation using a spring suspension is not possible at low
frequencies. For a linear spring supporting a mass against a gravitational acceleration ¢
the resonance frequency is fy = %\/g/_L, where L is the spring extension from equilibrium.
Achieving a resonance frequency of 0.1 Hz would thus require a prohibitively long spring
extension of more than 25 m. We have therefore constructed an active system that combines
relatively short mechanical springs with an electronic feedback system to create an almost
critically damped spring—mass system with an effective resonance frequency of ~ 0.005 Hz.

We now describe the basic theory, implementation and performance of the active vibra-
tion isolation system. A more detailed discussion of a very similar active vibration isolation
can be found in [38].

We start with a mass m that is suspended from a linear spring (we assume that the

spring suspension point and the ground are rigidly connected) with spring constant k and

damping factor § (Fig. 3.21). We want to decouple its motion z(¢) from any motion z4(t)



68 CHAPTER 3. EXPERIMENTAL APPARATUS

of the ground (both measured relative to a stable reference point). This system has the

equation of motion

5+ 2owo(2 — 24) Fwd(z — 24) =0, (3.3)
where wg = k/m is the natural resonance frequency and (o = B/(2mwp) the damping

constant (o = 1 for a critically damped system). In our system we typically have a natural
resonance frequency of 1 Hz and very little damping ({p = 0.03).

In order to lower the resonance frequency of the system we use a magnetic actuator to
apply two additional forces, F, and F;,, to the suspended mass. F, = —m(Z is proportional
to the acceleration of the mass and F,, = —2mwqH % is proportional to its velocity. Here G
and H are constants determined by the feedback electronics and Z and Z are both derived
from the signal of an accelerometer mounted to the suspended mass. The resulting equation

of motion
(1 4+ G)2 + 2Cowo((1 4+ H)z — 2,) + wi(z — 24) = 0 (3.4)

shows that the system now has a new resonance frequency wy; = wo/\/G——H and a new
damping factor ¢; = (¢o + H)/v/G + 1. Increasing the gain G lowers both the resonance
frequency and the damping. To compensate for the loss in damping, it is also necessary to
increase the gain H.

In the real system the acceleration of the mass is measured by a low noise, low frequency
force feedback accelerometer (Guralp CMG-3V) and then digitized using a 16-bit data
acquisition board (National Instruments AT-MIO-16X). The signal is then processed by a
digital loop filter that implements the gains G and H (typically G =~ 10000, H ~ 300) but
also contains additional compensators to maintain closed-loop stability at high (~ 80 Hz)
as well as low (~ 0.001 Hz) frequencies [38]. To close the feedback loop the output signal
is converted back into analog form and used to control the current through the solenoid
actuator (BEI LA 12-12 A).

The physical implementation of the vibration isolator (Fig. 3.22) differs from the one in
[38] mainly by using only two springs and a different permutation of components. Placing
the air piston on top makes the system more stable. The axis of the air piston must be
parallel to ke and g to achieve optimal performance.

Alignment is critical for a single axis system such as this one. We have therefore ex-

pended substantial effort on making the axis of the air piston, the sensitive axis of the
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accelerometer and the direction of light propagation (normal to the mirror surface) parallel
to each other and ultimately the vector of gravity. To aid this alignment we have also added
an electronic tilt sensor (Sec. 3.5.3). The accelerometer is offset to the side so that its in-
ternal test mass is on the symmetry axis of the system. This is important, since otherwise
the system would translate benign rotational noise into unwanted vertical vibrations. To
reduce sensitivity to magnetic fields the accelerometer itself is fitted with a magnetic shield
(Magnetic Shield Corp. 35P70) and additionally the whole vibration isolator is enclosed
with magnetic shielding material.

Figure 3.23 shows the performance of the vibration isolation system. Without electronic
feedback the combination of optical table pneumatic isolators and vibration isolator spring
suspension already reduces vibrations substantially at frequencies above 3 Hz, but at the
expense of some amplification at the mechanical resonance frequencies of 1.2 Hz (springs)
and 1.8 Hz (table). Turning on the electronic feedback further reduces low vibrations in
the 0.01 to 10 Hz frequency band. The error signal (bold line) indicates a reduction by as
much as a factor of 300, but without an independent sensor we cannot be sure that the true
performance is as good. However, the great improvement of our interferometer signal (Sec.

5.2) provides strong supporting evidence.

3.5.2 3D active vibration isolation of optical table

While the main vibration isolation system works well it has intrinsic performance limitations
due to its one—dimensional nature. Most importantly, it cannot eliminate rotational vibra-
tions around the two horizontal axes. Since the atom interferometer can also be sensitive to
rotations (Sec. 5.3.5, 6.5.1), these rotational vibrations, particularly when enhanced close
to the table resonance frequency (~ 2Hz), could potentially dominate the interferometer
noise.

To eliminate this potential problem we have added a 3D (vertical, x-tilt, y-tilt) feedback
system to control and vibrationally isolate the whole optical table. The system uses three
single-axis, force-feedback accelerometers (Kinemetrics FBA-11, 10V /g, flat acceleration
response to 90 Hz) to sense vertical accelerations at three different points of the L-shaped
optical table (Fig. 3.24). Their amplified signal is then digitized, electronically filtered
and fed back to a set of three magnetic actuators (loudspeaker coils) mounted directly
underneath each sensor.

Each amplifier has a gain of 1000, includes 400 Hz low pass filters and an additional
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Figure 3.23: Vibration isolator performance. (a) Acceleration noise spectral density mea-
sured by the vibration isolator accelerometer. Passive spring isolation of the optical table
and the isolator spring suspension (solid line) reduce the high frequency vibrations relative
to the lab floor (dotted line). Turning on the electronic feedback (bold line) additionally
suppresses low frequency vibrations. Below 10 Hz the error signal is smaller than the input
noise of the spectrum analyzer used for this measurement. (b) Position response to two
steps in the force acting on the suspended mass. It indicates an slightly under damped
system with a natural resonance frequency of 0.0025Hz. Achieving the same resonance
frequency would require a 40 km long mechanical spring.
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Figure 3.24: 3D active vibration isolation and tilt control system.

notch-filter to eliminate traces of the 7.5kHz internal accelerometer excitation frequency.
The amplified accelerometer signal (10000 V/g) is then digitized at 4000 samples/s using
the same 16-bit analog input board and computer as the 1D system. The feedback software
is also just an extension of the 1D version, but an additional 12-bit analog output board
(National Instruments AT-AO-10) has been added to handle the new channels. The output
signals are then converted into currents and drive three magnetic voice coil actuators, which
in turn apply forces to the optical table.

In contrast to the $ 1000 BEI voice coil actuator in the 1D-system, the 3D-actuators
are taken from old loudspeakers, purchased at a flea-market for $ 10 each. These cheap
actuators have some drawbacks compared to actuators specifically designed for feedback
applications: they need bigger magnets to achieve the same level of force, produce stronger
stray magnetic fields, are hard to mount and have a very tight air gap. While the first
points are of no concern for our application, it would be nice to have a wider air gap to
allow bigger horizontal table movements before the coils start to rub. However, if one
carefully aligns the coils properly and takes care not to bump the optical table too hard

then the old loudspeakers are perfectly adequate.
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The feedback parameters of the system can be adjusted to achieve new table resonance
periods of 3 or 10 seconds. In either case the former, troublesome resonances at 2 Hz are
completely suppressed. The system’s performance at high frequencies is not as good as
originally envisioned since the feedback bandwidth is currently limited to about 30 Hz by
some not yet identified mechanical resonances. The optical table itself should be stiff enough
to allow bandwidths of more then 100 Hz, so the problem probably lies with the voice coil
actuators and their support structure. This could certainly be changed if better performance
should be desired in the future, and it would also be possible to improve the not yet fully
optimized feedback software: while the system currently uses three independent single input,
single output (SISO) feedback paths it would benefit from a fully integrated multiple input,
multiple output (MIMO) design which takes care of all possible cross couplings and might

even include the additional 1D—stage.

3.5.3 Tilt control

The quantity of interest for local gravity measurements is usually the absolute magnitude,
|g|, of the local acceleration vectorf. The atom interferometer, on the other hand, measures
only the component of gravity in the direction of the effective Raman wave vector ke,

which is evident from the formula for the interferometer phase shift
Ap = g-kgT? = |g|lke|T?cosf. (3.5)

In order to measure the correct magnitude of local gravity, it is therefore important to have
the effective Raman wave vector properly aligned along the vertical axis. This means that
the misalignment angle 6 has to be less than 45 urad (9 arcsec) to achieve a measurement
accuracy of 1 pGal, and less than 14 urad (3arcsec) for 1 pGal. This is not a trivial
requirement since even the concrete floor of our laboratory shows daily tilt variations of
typically + 20 urad, probably caused temperature variations. And things are much worse
on top of the optical table, which can easily tilt by more than 100 yrad. We have therefore
implemented yet another feedback system to control tilt.

Since in our setup the effective wave vector is normal to the surface of the retro-mirror,

we rigidly attach a 2-axis, high resolution electronic bubble level (Applied Geomechanics

$1n principle all components of the vector g would be of interest, but to interpret them properly one would
need to know their orientation relative to an gravity independent coordinate system, which is extremely hard
to realize on Earth’s surface.
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755-1129, 0.1 urad resolution, 1 urad repeatability) to the back of this mirror and use it as
the tilt sensor for our feedback system. To calibrate the bubble level we rotate the whole
assembly through 360 degrees, using three ball bearings in contact with the mirror surface
as our reference plane, and observe the sinusoidal modulation of the output signal. This
method allows us to determine horizontal orientation to within + 5 prad.

Any measured deviations of the retro-mirror from its proper horizontal orientation are
compensated for by adjusting the tilt of the whole optical table. This is done by using two
pairs of leak valves, one electronic, one manual. Each pair controls the airflow to the two
pneumatic isolators at each end of the L-shaped optical table. The manual valve (Porter
HRCVBIS, 1000 sccm Air max. at 75psi) is set to allow a small amount of air to escape
continuously, at a rate which would cause the table to tilt at about 1000 urad/minute.
Usually this outflow is exactly canceled by an equivalent inflow through the electronic valve
(Porter EPCA08, 975scem Air max. at 75psi). By electronically adjusting this inflow it
is now easily possible to make the table tilt one way or the other. Since the inflow is also
proportional to the input pressure, it is important to keep this pressure constant to prevent
disturbances of the system. We use a high quality pressure regulator (Porter 8310-AMBF-
100) to keep it fixed at 70psi, approximately 15psi higher than the maximum pressure
inside the pneumatic isolators.

The loop filter for this feedback system is implemented using analog electronics and set
for a slow time constant of approximately 2 minutes. Currently, the feedback for the two
tilt axes is implemented independently and the electronic feedback system does not regulate
the airflow to the central four air legs and has therefore no control over the average height
of the table. There are two possible modes of operation: The central air legs can be valved
off and the low leakage rate allows several days of runtime before the table settles too much
(~ 1 mm). Alternatively, one can use a standard mechanical leveling valve if very long run
times are necessary and the resulting disturbances can be tolerated. In principle it is also
possible to add a third pair of valves for the central air legs and use an electronic position
sensor¥ to keep the table height constant. In this case it would also be necessary to change
the loop filter in order to replace the two independent single-axis (SISO) channels with a
more general 3-axis (MIMO) feedback method.

TWe have actually installed a LVDT (Linear Variable Differential Transducer) position sensor (Schaevitz
200 HR, + 5 mm range, < 1 um resolution), together with a signal conditioning unit (RDP E308). We don’t
currently use it for feedback, but it is very useful for several other purposes.
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We have also tested the systems performance using a second, independent tilt sensor
which is mounted to the main body of the optical table. The short term regulation is better
than 1 prad. Over periods of several days there are very slow drifts of up to =420 urad,
but these are probably not due to a problem with the feedback system. Instead, they are
most likely an indication for slight warping of the tower structure supporting the vibration
isolator and the main tilt sensors attached to it. Such warping could, for example, result
from small temperature fluctuations. In order to gather more information, one could use
two tilt sensors mounted very close to each other.

In summary, the tilt control system is extremely reliable and a pleasure to work with.

It can be turned on without problems and does not require any further user intervention.



Chapter 4

Experimental Results

In this chapter we present our experimental results, starting with the demonstration of
simple Raman transitions and then proceeding to measurements of increasing complexity.
While we briefly comment on the noise sources affecting these measurements, we otherwise
defer the in depth discussion of this important topic to Chapter 5. Similarly, while we
present the results of an experimental comparison between our atom interferometer and a
classical “falling corner—cube” gravimeter, we leave the thorough investigation of potential
systematic errors and their implications to Chapter 6.

Most of our measurements were performed using retro reflected Raman beams in linllin
configuration (Sec. 3.4.4) to drive Doppler sensitive Raman transitions. The exception are
a few tests that were conducted using Doppler insensitive Raman transitions driven by
co—propagating Raman beams in ™™ configuration. This modification is useful since it
allows one to investigate noise and systematic errors in a somewhat simpler system that is

not affected by vibrations or the initial velocity distribution of the atoms.

4.1 Rabi Oscillations

The decay of the Rabi oscillation amplitude for increasingly longer pulse lengths is a good
indicator for the performance of our Raman pulses. Fig. 4.1 shows such Rabi oscillation
decay under actual experimental conditions and Fig. 4.2 demonstrates how well the detuning
dependence follows theoretical predictions.

The primary cause for the decay are the slightly different conditions encountered by

different atoms in the atomic cloud. Examples are the variation of the Rabi frequency
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Figure 4.1: Rabi oscillations for Doppler sensitive (a) and Doppler insensitive (b) Raman
transitions. The solid lines are experimental fits for a Gaussian decay envelope. (a) also
shows the small population transfer caused by spontaneous emission due to the finite de-
tuning A from the intermediate state. To obtain this data the laser difference frequency
was detuned from the Raman resonance condition by ~ 1 MHz.
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Figure 4.2: Frequency dependence of the transition amplitude for a square Raman m-pulse.
In the Doppler insensitive case (b) the data (dots) is described extremely well by the the-
oretical Rabi formula (line) and side lobes are visible up to very high order (= 50). In the
Doppler sensitive case (a) the atomic velocity distribution smears out the peak somewhat,
even for severe velocity preselection. However, the first order side lobes are still visible.
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depending on the position in the Gaussian Raman beam intensity envelope and, in the
Doppler sensitive case, the different detunings for different atomic velocity classes. For our
standard beam diameter of 2.7cm displacements of as little as 1 mm can cause obvious
differences in the decay rate.

We have achieved essentially the same performance for Doppler free and Doppler sensi-

tive transitions, something that is only possible because of severe velocity preselection.

4.2 Interferometer Fringes

To measure gravity we combine the individual, optimized Raman pulses into the § —m — &
atom interferometer sequence. Fig. 4.3 shows a typical gravity fringe for an interferometer
pulse spacing of T' = 160ms, close to the maximum permitted by the finite size of the
magnetically shielded measurement region. Acquiring and fitting a sequence of such 1
minute fringes allows us to measure gravity with a resolution of 2.0 x 108 g/\/m Taking
data by sitting on the slope of a fringe gives an even higher resolution of 1.5 x 1078 g for a

single launch or 1.7 x 1078 g/VvHz.

4.3 Long Term Gravity Data

To perform useful measurements any gravimeter has to be able to operate continuously
over extended periods of time. The gravity data in Fig. 4.4 demonstrates that our atom
interferometer is indeed able to operate continuously for many days.

Figure 4.4 also illustrates the very important fact that the local acceleration due to grav-
ity is definitely not constant. Instead, it displays a complicated time dependence caused
mostly by tidal forces. Although these tidal effects are often an object of study them-
selves, they are considered a predictable perturbation in the context of absolute gravity
measurements and are corrected for using theoretical tide models.

Since the tidal effects are large compared to the instrumental resolution and targeted
accuracy it is essential to model them properly. At first glance the theoretical curve in Fig.
4.4 seems to match the experimental data extremely well. However, detailed examination of
the data in Fig. 4.5 makes clear that standard tide models, even if they include the Earth’s
elastic response to tidal forces, are totally inadequate at this level of precision.

The obvious discrepancy between the standard tide model and the experimental data
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Figure 4.3: Typical Doppler sensitive interferometer fringe for a pulse spacing of T' = 160 ms,
the same as used for most of our gravity measurements. Plotted is the fraction of atoms
excited from the F' = 3, mp = 0 state to the FF = 4, mpr = 0 state. The phase of the fringe
is scanned by adjusting the frequency step size Af (see Sec. 3.4.2). The durations of the 7
and & pulses are 80 and 40 us, respectively. The phase of the fringe is scanned by adjusting
Afy — Afs (see Sec. 3.4.2, Fig. 3.16). Each of the 40 data points represents a single launch
of the atoms, spaced 1.3 seconds apart and taken over a period of 1 minute. One full fringe
period corresponds to ~ 2 x 107%g. Performing a least squares fit determines local gravity
to approximately 3 x 1079 g.
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Figure 4.4: Gravity data taken over a period of several days. The data points are spaced
approximately 1 minute apart and each corresponds to one of the interferometer fringes
shown in Fig. 4.3. The data clearly shows the complex variations in g caused (mostly) by
tides. The solid line is a single parameter (vertical offset) fit using a theoretical model of
the gravity tides at our measurement site (Stanford, California).

can be attributed to a phenomenon that is known as ocean loading [39, 40]. Ocean loading
is caused by the redistribution of the water in Earth’s oceans in response to tidal forces.
When more water is present at a certain location, its mass will increase the pressure at the
ocean floor and depress it slightly. This minute change in the shape of the planet, not direct

gravitational attraction by the water, is the cause of the periodic residuals in Fig. 4.5.

Including an ocean loading model [41, 42] reduces the discrepancy between data and
theory significantly, but there still seems to be a slight periodicity visible in the new resid-
uals, indicating that even this ocean loading model might not be good enough. However,
one can reduce the influence of the essentially periodic imperfections by always averaging

over an integer number of full cycles.
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Figure 4.5: (a) A closer look at two days of gravity data. Each data point represents a one
minute gravity measurement. The solid lines represent two different tidal models. (b) The
residuals of the data with respect to a tidal model where (i) the Earth is modeled as a solid
elastic object and where (ii) the effects of ocean loading of the Earth are taken into account.
Effects at the few parts per billion level like changes in the local barometric pressure have
not been included.
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4.4 Comparison with Classical Gravimeter

The only sensible way to determine the atom interferometers accuracy is to compare it
directly to other absolute gravimeters. The fact that local gravity, unlike the value of
fundamental physical constants, is site dependent complicates such a comparison. Both
instruments have to determine gravity at the same location and, since gravity values are
sensitive to changes in the local environment, it is also desirable to perform the measure-

ments simultaneously.

We have been able to perform such a comparison in our laboratory and over a period
of 3 days, using an FG5 absolute gravimeter provided by the National Science Foundation
(NSF) and operated by National Ocean and Atmosphere Administration (NOAA). The
FGb5, one of the most advanced absolute gravimeters currently available, measures gravity
by monitoring the motion of a freely falling corner—cube acting as the retro-reflector in
one arm of a Michelson laser interferometer. The accuracy of this instruments is usually
specified as 2 pGal, but data from international gravity comparison measurements [43]

indicates that 4 uGal is a more realistic number.

In addition to testing the atom interferometer’s accuracy we were also interested in com-
paring the measurement noise of the two instruments. The resolution of the FG5 gravimeter
is specified to be as good as 5 uGal for a single drop under ideal conditions (seismologically
quiet site, far removed from civilization and related noise) and theoretically the repetition
rate could be as high as 1 drop per second. This would mean a resolution of 5 uGal/ VHz,
substantially better than the 20 uGal/ VHz achieved by our atom interferometer. However,
our laboratory is definitely not an ideal site as described above. It is located on the sec-
ond floor of the busy physics building which itself is surrounded by major demolition and
construction sites. It was therefore very interesting to see how the FG5 gravimeter would

perform under these circumstances.

We also learned that the drop rate of the classical instrument is practically limited to
about 1 drop every 15 seconds. Otherwise, mechanical wear would reduce the lifetime of
the instrument and the lack of sufficient settling time for drop related vibrations could
compromise the instruments accuracy. The repetition rate of our atom interferometer,
on the other hand, is basically determined by the interferometer pulse spacing 7" and the
loading time for the MOT. Currently it is limited to one launch every 1.3s by the finite

time necessary to reprogram the DDS synthesizer between launches.
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Figure 4.6: Comparison between atom interferometer (lower dataset) and classical gravime-
ter (upper dataset). Each point represents 1 minute of tide corrected gravity data, which
corresponds to 4 drops of the corner—cube and 40 launches of the atoms. The continuous
lines are running averages (30 minutes). The histograms show distribution of the 1 minute
data points around the mean (for every 30 minute interval). Compared to the classical
instrument, the measurement noise of the atom interferometer is smaller by a factor of
3 for equivalent measurement times. The noise per drop (launch), on the other hand, is
comparable.
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The original data from comparison measurement is summarized Fig. 4.6. To compare
the resolution of the two instruments with their different sampling rates we binned the
data into same length intervals (1 minute, corresponding to 40 atom launches and 4 corner-
cube drops). Looking at the data it is immediately obvious that the noise of the atom
interferometer measurement is lower by a factor of 3 when normalized to measurement
time, even though the performance per drop is comparable.

Comparing the absolute gravity values is more complicated since the measurements were
taken at slightly different locations and measurement heights (Sec. 6.5.2). After accounting
for the different locations, we found that there was still an offset of approximately 175
pGal (Fig. 4.6). We later discovered that most of this discrepancy could be attributed an
incorrect published value for the cesium Do—wavelength (see Sec. 6.2.1). Using a better
wavelength value to analyze our data immediately reduced the discrepancy to less than
40 pGal.

Subsequently, we have investigated many potential systematic errors (see Chapter 6).
We found that two effects in particular, Coriolis forces due to Farth’s rotation (Sec. 6.5.1)
and disturbances of the vibration isolation system by the pulsed magnetic fields of the
experiment (Sec. 6.4.2) were responsible for most of the residual 40 uGal offset. We have
been able to essentially eliminate the second effect by enclosing the whole vibration isolator
inside a magnetic shield. We have also put substantial effort into minimizing the effect of
Coriolis forces by proper alignment.

After implementing these improvements and with a much better knowledge of the re-
maining problems we have performed another gravity measurement, the results of which we

will present in the final chapter of this thesis (Chapter 7).



Chapter 5

Noise

Our atom interferometer currently has a resolution of ~ 2 x 1078¢g for a single launch
of the atoms. As shown in Sec. 4.4 this is at least comparable, if not better, than the
performance of classical absolute gravimeters. It is also a big improvement over the first
atom interferometer measurements by Kasevich and Chu in 1991 [11], which had a resolution
of ~3x 10 %g per launch.

For the early experiments the noise was clearly dominated by residual vibrations. Now,
after many improvements and the implementation of an active vibration isolation system,
the situation is substantially more complicated. We have investigated the effect of many
noise sources, using theoretical analysis as well as experimental measurements.

The experimental measurements used both, counter—propagating Doppler sensitive and
co—propagating Doppler insensitive* configurations to differentiate noise due to vibrations

and rotations from noise contributions related to the phase measurement itself.

5.1 Definitions

We first define the term “resolution” of a gravity measurement in the context of this exper-
iment. Assume we have a sequence of equally spaced gravity measurements g, = g(t,) with

tny1 = tn + 7, where 7 is the time between two consecutive measurements. One possible

*Even in Doppler “insensitive” mode our interferometer can measure the small residual Doppler shift
with enough resolution to determine ¢ to better than 1 part in 10!
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characterization of the measurement noise would be to use the ordinary variance

o7 = ((ga—{om))") (5.1)

However, this variance generally depends on the number of samples in a finite sequence of

gravity measurements and might diverge for infinite sequences. The two—sample variance

0;27) = §((gnr1—g0)°) (5.2)

on the other hand, does not depend on the number of samples. We therefore refer to this
quantity as the resolution of the gravity measurement.
It is also possible to define the two—sample variance o4(2,t) for longer time separations

t = N7 by first taking the mean of N consecutive measurements. It is given by

2 _ 2 _ l = In+k _ 2=t In+k ’
o2 (2,1) o2(2,NT) 5 > N > N . (5.3)

k=0 k=N

If the noise of consecutive measurements g, is uncorrelated, then we have

04(2,N1) = L09(2,7') and 04(2,7)=0y. (5.4)

VN

Since this is the case for most of the noise sources that we have considered (except for very
low frequency vibrations and rotations), we often do not distinguish between o,(2,7) and
og.

We can also relate the variance of g to the signal-to—noise ratio of the experimentally

observed interferometer fringes. Assume that the number of detected atoms is given by
z = A[l+Ccos(A¢)], (5.5)

where A¢ = koggT? is the interferometer phase, C the fringe contrast and A C' the observed
fringe amplitude. We then define the signal-to—noise ratio (S/N) = AC/o, by comparing
the variance o, of the signal on the slope of a fringe to the fringe amplitude A C'. Assuming
that neither A nor C fluctuate, the S/N-ratio and the variances of interferometer phase

and gravity value are related by
(S/INY' = opny = kegT 0g. (5.6)

When theoretically evaluating the effect of potential noise sources, we generally assume

100 % fringe contrast.
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5.2 Evolution of interferometer performance

Figure 5.1 shows how interferometer contrast and noise evolved over time. The introduction
of the active vibration isolation system was absolutely essential, allowing us to increase the
time between interferometer pulses from 10 ms to more then 150 ms, corresponding to an
automatic 225-fold increase in sensitivity. Without vibrations dominating the noise it soon
became obvious that the microwave synthesizer controlling the Raman frequency difference
was not really up to the task. Replacing it with a better system, including a frequency
multiplier chain usually used for atomic clocks, allowed us to reach single launch reach
resolutions of better than 1 x 10~7 g for the first time.

Further improvements over the course of several months then allowed us to reach our
current noise level and a resolution of better than 2 x 10~8 g per launch. The main changes
to the setup are illustrated in Fig. 5.2. Besides removing major sources of noise from
the optical table and improving structural stability, meticulous alignment of the vibration
isolator and the Raman beams proved to be extremely important.

Even after achieving this level of performance we continued for several months to search
for additional noise sources and to implement several improvements to the apparatus —
but, sadly, without any major gain in resolution. Some of the attempted modifications were
admittedly more important with respect to eliminating systematic errors:

3D active vibration isolation, active tilt stabilization, counter-rotating table to cancel
Coriolis forces due to Earth’s rotation, better quartz frequency standard, different mi-
crowave synthesizer, canceling Doppler shift during individual interferometer pulses, mov-
ing phase—lock photo—diode to reduce phase noise, temporary elimination of all mechanical
shutters, temporary shutter in Raman beams to eliminate leakage light, shielding of Raman
beams from air currents, replacement of dirty vacuum chamber window for Raman beams,
better beam dump for Raman beams, prevention of vibration isolator air bearing rota-
tion, better pressure regulation for air bearing, damping of mechanical springs in vibration

isolator, and magnetic shielding around vibration isolator.

5.3 Possible noise sources

Table 5.1 summarizes the most important noise sources and their estimated effect on the
experiment. Their relative importance also depends on experimental parameters like the

time T between interferometer pulses and, to a lesser degree, the length of those pulses.
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(b) March 1996, T = 150 ms
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Figure 5.1: Evolution of interferometer noise and fringe contrast. 7" is the time between
interferometer pulses, Ag/g the measurement resolution for a single launch. FEach data
point also represents a single launch. (a) No active vibration isolation, optical table isolators
only. (b) First result after installing vibration isolator. Note that increasing T from 10 ms
to 150ms alone results in a 225-fold increase resolution, even when the fringe looks the
same. (c) After improving the Raman phase lock. (d) Final performance, after optimizing
Raman beams and implementing many mechanical improvements (see text and Fig. 5.2).

Improved contrast due to velocity preselection.
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Some effects, like shot noise or detection noise, are clearly not a problem at the current
time. The remaining effects, although not large enough to fully explain the observed noise

level, deserve further discussion and presentation of the experimental evidence.

Noise source Signal/Noise | o, (uGal)
Atom shot noise (3 x 105 atoms) 1700 0.16
Detection noise 300 0.9
Loran-C frequency stability (8 x 107! at 1s, 100 Hz BW) 95 0.3
Raman-laser intensity noise (~ 0.5 %) 75 3.5
High frequency phase noise (2 x 10~* rad/+/Hz) 25 11
Residual vibrations and rotations > 50 <5
Observed noise 14 19

Table 5.1: Known noise sources and their estimated effect on a gravity measurement with
T = 160 ms between interferometer pulses of lengths 7 = 100 us and 7/ = 50 us.

5.3.1 Shot noise and detection noise

Without using specially prepared sources of atoms, like Bose—Einstein condensates, the
atomic shot noise should ultimately limit the resolution of the interferometer at a level
proportional to 1/ V/N, where N is the number of contributing atoms. In our experiment
~ 3 x 10% atoms contribute to the interferometer signal, corresponding to a shot noise
limited S/N-ratio of 1700/1.

One necessary condition for shot noise limited performance is a detection efficiency
sufficiently close to unity. Our fluorescence detection scheme fulfills this condition (~ 5
scattered photons detected per atom, including quantum efficiency of PMT), but is still
limited by other problems. This is actually a very typical situation for pulsed experiments
which use relatively large samples of atoms, since even the best detection methods seldom
achieve S/N-ratios of better than 1000/1 (300/1 for our system) for a single measurement.

Continuous measurements, for example on atomic beams, achieve shot noise limit perfor-
mance more readily, mostly because they generally have a better balance between number
of atoms and detection noise. As an example, let us assume that we could perform our

gravity measurement continuously, using the same average flux of 2 x 10% atoms per second
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(3 x 105 atoms, 1.3s between launches). In principle it would take the detection system
less than 1ms to achieve a S/N-ratio of 300/1, but during this time only 2 x 103 atoms
pass through, corresponding to a shot noise of ~ 45/1. The overall detection noise would
therefore be shot noise limited. In other words, pulsed experiments suffer because they pile
up unnecessarily many atoms in too short a time interval.

Some additional comments: The 300/1 detection S/N-ratio is probably limited by fre-
quency fluctuations of the probe beam (its intensity is actively stabilized). For very small
numbers of detected atoms fluorescence from the relatively dense cesium background vapor
may dominate the noise. For Doppler sensitive measurements, including the actual inter-
ferometer, the normalization does not work as well, since atoms in different states arrive
at slightly different times. Under some circumstances this can result in detection noise
dominated by the ~ 1% fluctuations in the number of trapped atoms. While we currently
only use ~ 3 x 10 atoms per launch, this number could easily be increased to ~ 5 x 107
atoms (using less severe velocity preselection and detection aperturing) if the shot noise

limit should ever become a problem.

5.3.2 Raman-laser intensity noise

The Raman beam intensities are not actively stabilized and therefore show noticeable in-

tensity fluctuations and the corresponding changes in the Rabi frequency affect the interfer-

ometer signal. The short term (1 Hz — 1kHz) intensity fluctuations of the combined beams

are typically 0.5% or less. After the first §—pulse the fluctuations in the atomic inversion
W are given by

m AQ) m Al

oWy = —— = ——. 5.7

i 2 0 271 (5.7)

After the complete interferometer sequence, and under the assumption that the intensity

fluctuations for all three pulses are uncorrelated, the fluctuations at the slope of a fringe

are given by

V31 AQ
ony = oW = g =

VBr Al
2 |

= (5.8)

Here the inversion W is also a direct measure for the interferometer phase shift A¢, and

the 0.5 % intensity fluctuations therefore result in a S/N-ratio of 75/1.
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5.3.3 Raman-laser phase noise

All the interferometer phase shifts are measured relative to the Raman phase and any
Raman phase noise therefore translates directly into noise of the gravity measurement.
According to A¢ = keggT? the same amount of phase noise corresponds to different smaller
amounts of acceleration noise at longer interferometer pulse spacings T. There are three

basic contributions to the Raman phase noise:

Phase—lock noise

The phase—lock system can usually be neglected relative to the other contributions, espe-
cially when the two Raman beams are first sent through an optical fiber together before
their beat note is detected by the fast photo—diode. If the photo—diode is placed before the
fiber, as we have first tried, the Raman beams are not perfectly overlapped when part of the
light is split off and sent to the photo—diode. This small imperfection causes the Raman
phase at the photo—diode (controlled by the phase—lock) to differ from the one at the fiber
coupler (seen by the atoms). Air currents and slight piezo movements in the external cavity
lasers (Littrow configuration) affect this difference and cause noticeable, though usually still

negligible, amounts of phase noise (~ 0.05rad RMS when integrated from 1 — 100 Hz).

Short-term stability of frequency reference

The short term stability of the quartz frequency reference, usually expressed in terms of the
Allan variance o,(T'), is another possible problem. In fact, the atom interferometer could
almost be used to measure this quantity, if there were not too many other noise sources.
Let us now explain this relationship, starting with the definition of the Allan variance, or
more precisely “the two-sample variance of the fractional frequency, without dead time,
bandwidth limited at f.” [25].

Let us assume that the nominal output frequency (possibly multiplied into the microwave
range first) of the oscillator is fy, that we divide time into equal intervals of length T" and can
somehow measure the average frequency f, during each interval. Then the Allan variance

is defined as

r £ N\2
T) = <%> (5.9)
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The average frequency can be expressed in terms of the phase difference between the be-

ginning and end of each time interval,

. 1

= — (pna—on1). 5.10
i ——(Pn2 — on1) (5.10)

We can now use the definitions

©1=Pn1, ©2=Pn2=Pnti1, ©3=0nt12 and Ap =3 —2ps+ @3 (5.11)

to express the Allan variance as

1 (103 — 2p2 + 1)° 1
OS(T) - (27Tf0T)2 < : 22 - > - 2(27Tf0T)2 <A802> . (5.12)
or, using the fact that (¢3 — 22 +¢1) =0, as
AN = g (M- 00 = g (Be— 8. (13)

We can now compare expression for the Allan variance to the one for the interferometer

phase shift,

ke = (A" —(A0)) = ((A¢—(20))7), (5.14)

and find that the two quantities are in fact proportional’. This means that the short term
stability of the frequency reference sets a lower bound for the interferometer noise. If it is
the dominant noise source, then an interferometer with time 1" between pulses can actually
be used to measure the Allan variance oy (T") of the reference.

We have measured the Allan variance of several quartz oscillators, including our Loran-
C frequency reference, by comparing them to each other using the setup in Fig. 5.4. The
results are shown in Fig. 5.3. The chosen measurement bandwidth of f. = 100 Hz allows
reliable measurements down to T = 1s before being limited by white phase noise (see
Section 5.3.3). We find that the Loran-C reference has the worst stability by far. It seems
to have especially big problems at time scales of several minutes, probably because of badly
designed system for locking the quartz to the Loran-C signal. Luckily we only care about
the performance at shorter times where the Allan variance is actually pretty good. The

measured value at 1 s is o,(1s) = 8 x 10713, which is ~ 6 times better than the product

TFor the interferometer (Ag) = kergT? # 0, but this does not make any difference for the noise. The
Allan variance also depends on the measurement bandwidth f.. For the interferometer f. is approximately
1/(27), where 7 is the length of a single interferometer pulse.
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Figure 5.3: Short term stability of frequency standards. All measurements were performed
using the setup in Fig. 5.4 and a measurement bandwidth of f. = 100 Hz. We compared
three different quartz frequency standards: an Oscilloquartz B-5400 (OSC), a FTS-1050-A
(F'TS), and our standard SRS FS-700-01 Loran-C receiver (SRS). (a) Allan variance OSC
vs. SRS. (b) Frequency offset OSC vs. SRS. (¢) Allan variance OSC vs. FTS. (d) Fregency

offset OSC vs. FTS.
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Figure 5.4: Setup for measuring Allan variance.

specification. Assuming that the Allan variance at 1s and 0.1s are similar (probably not
a bad assumption given the graph in Fig. 5.3), then it would only limit our measurement
noise to 95/1. If this should ever become a problem, then we always have the option of

using one of the better quartz oscillators.

High frequency phase noise

White phase noise of our microwave frequency source turns out to be the biggest problem.
It is dominated by the phase noise of our 10 MHz reference when multiplied up to microwave
frequencies (frequency multiplication increases phase noise by 20 dB for every multiplication
by 10 !). Our frequency multiplier chain does not provide any filtering to reduce this
noise, since it was originally intended for use in atomic clocks where this noise was not the
dominant problem. In this respect, a good microwave synthesizer (HP-8665-A) actually
offers better performance.

We had one of these synthesizers available for a short time and used the setup in Fig.

5.6 to measure the relative phase noise between our standard microwave source and the
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Figure 5.5: Phase noise of microwave frequency sources.

synthesizer (both phase-locked to the same 10 MHz reference). The result is shown in Fig.
5.5. Additional information from measurements with a third microwave source (Gigatron-
ics 600) makes clear that the white phase noise at high frequencies is due to the frequency
multiplier chain. The low frequency 1/f-noise is due to the synthesizer, but in this region
the overall noise is usually dominated by the phase noise of the multiplied quartz frequency
reference. To illustrate this Fig. 5.5 also shows the multiplied phase noise specification for a
good quartz oscillator (FTS-1050-A). The high frequency phase noise affects the interferom-
eter measurement by causing uncorrelated phase fluctuations for each of the interferometer
pulses. The variance oy ~ S,/ V271 of these fluctuations depends on the pulse length 7,
which determines the cut-off frequency f. for integration of the white phase noise. up to
which to integrate the white noise. It has thus slightly different values, og(7) and o4(%),
for different interferometer pulses. On the slope of an interferometer fringe the variance of

the total interferometer phase is then given by

2 25
Nt (5.15)

For m-pulse lengths of 100 us this would limit our S/N-ratio to 25/1. This noise contribution

Q

ons = oo(E) 4 dou(m)? + s(E)

probably limits the performance of the interferometer when operated in Doppler insensitive
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Figure 5.6: Setup for measuring phase noise.

mode. Replacing the frequency multiplier chain with the microwave synthesizer mentioned
above (HP-8665-A), we have observed somewhat lower noise levels (see Table 5.2). The high
frequency phase noise of this synthesizer should allow a S/N-ratio of ~ 100/1. However,

other noise source start to dominate much earlier.

5.3.4 Vibrations

Since our setup uses retro—reflected Raman beams, only (vertical) vibrations of the retro—
reflection mirror should be relevant. Let us initially assume that these vibrations have a

fixed frequency and a well defined phase. We can then write the vibrational acceleration as
a(t) = a (ac coswt+ ag sinwt) , (5.16)

where the time t = 0 coincides with the central m-pulse of the interferometer sequence

(&, Vyec, - - - are unit vectors). There are several ways to derive the resulting interferometer
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phase shift, for example by using a perturbative treatment [44, 23] and the perturbation
Lagrangian £ = m a-r. For symmetry reasons the result is not affected by the cosine—
component in Eq. 5.16, but the sine-component causes a shift of

das . . sin?(47)

Ag - T2 a - Vyec

: (5.17)

2
which clearly depends on the vibration frequency as well as the interferometer pulse spacing
(Fig. 5.7(a)). In fact, for each pulse separation T there are certain frequencies at which
vibrations have no effect. This occurs whenever an integer number of vibrational cycles fits
into the interval between 7— and §—pulses. Another important property is the second order
roll-off at frequencies higher than 1/7, which means that the interferometer effectively
low—pass filters the acceleration signal.

The frequency and time dependent sensitivity can actually be used to identify dominant
vibrations of fixed frequency w by comparing the measurement noise for different pulse
spacings 7T'. Since for certain times 7' the measurement is insensitive to this vibration, the
magnitude of the measured noise will be modulated accordingly. For example, if T'= 40 ms
then sinusoidal vibrations with a period of 40 ms would not contribute to the observed noise.
The modulation of oa4 in Fig. 5.8(a) would therefore indicate vibrations at ~ 25 Hz. The
vibration isolator error signal in Fig. 5.7, on the other hand, shows major vibrations at
~ 45 Hz, suggesting some type of parametrically driven noise term. Removing the water
cooled argon—ion laser from the optical table substantially reduced the noise oa4 as shown
in Fig. 5.8(b).

We can also use the above formula to calculate the noise of the interferometer signal (for
a specific T') from the power spectrum of residual accelerations at the vibration isolator.
One problem with this power spectrum is that the real accelerations in the lowest frequency
decade are obscured by the digitization noise floor. We still find that the measurement noise
due to residual vibrations should be between 4 and 8 uGal, corresponding to S/N-ratios of
66/1 and 33/1 (Fig. 5.7(b)(c)).

5.3.5 Rotations

In addition to vibrations the interferometer can also be sensitive to rotations. In addition
to systematic errors due Earth’s rotation this sensitivity can also cause noise problems. The
level of rotational noise is mostly determined by the performance of the optical table, which

reduces rotations at high frequencies but actually enhances them close to its resonance
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Figure 5.7: Effect of vibrations. (a) Relative sensitivity to different vibrational frequencies
for an interferometer pulse spacing of T' = 160 ms. (b) Vibration isolator error signal before
(i) and after (ii) multiplication by sensitivity function. (c) Predicted noise of interferom-
eter signal due to vibrations (weighted by sensitivity function) integrated up to a certain

frequency. All the data in this figure was taken before implementing the improvements
outlined in Fig. 5.2.
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Figure 5.8: Noise modulation due to vibrations. (a) Before Improvements. (b) After im-
provements: removed Argon—ion laser from optical table, stiffened tower structure sup-
porting vibration isolator, ... (Fig. 5.2). The solid line is a theoretical fit using 4 discrete
vibration frequencies.

frequency of ~ 2 Hz. The main active vibration isolator suppresses the ~ 2 Hz vibrational
resonance but does nothing to suppress rotations. This is one of the reasons why we added
an active 3D vibration isolation system for the optical table. While this system thoroughly
eliminates problems at the original table resonance, it currently does nothing at frequencies
above 10 Hz.

Since the main vibration isolator performs very well over a wide frequency range, we
can assume that it eliminates all vertical movement at the sensor location. Effectively, we
therefore have to consider only rotations around this point. We first consider rotational

noise with a well determined frequency w and phase which can be written as

N

Qi) = Q (Q coswt+ Qg sinwt) , (5.18)

where the time ¢ = 0 coincides with the central m-pulse of the interferometer sequence. As
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in the case of vibrations we can derive the resulting interferometer phase shift by using a
perturbative treatment and the perturbation Lagrangian £L=m Q- (r x v) + %m (Q xr)2.

The sine— and cosine—components in Eq. 5.18 give rise to different shifts in the measured

acceleration:
Agc = 253‘: Q . (VO X Qrec) 20 E:UT) (519)
N in? (&7
Ags - _4,1%8 Q- (XO X ‘A/rec) Sln@# (520)

Here xo and v are the atomic position (relative to the sensor in the vibration isolator)
and velocity (taking the mean of both interferometer paths) at the time of the central
interferometer m-pulse. We have neglected the centrifugal force terms since they are small

compared to the other contributions.

Note that while for constant rotation rates (w = 0) the first contribution reduces to the
familiar coriolis force term, Ags = 2Q - (v X Vyec ), the second contribution will vanish. It

is therefore easily overlooked when making theoretical predictions.

Both effects only become relevant when the experimental apparatus is misaligned in
one way or another. The first one is proportional to the horizontal velocity dv = v - Viec,
the second one to the horizontal offset dx = xg - Vyoc between atoms and sensitive point
of the vibration isolator (Vye is vertical). The horizontal velocity dv is generally very
small (< 2 x 10~ m/s), since it is carefully adjusted in order to avoid systematic errors
caused by Earth’s rotation. The horizontal displacement is harder to quantify and probably
substantial. We have actually been able to reduce the measurement noise by horizontally
translating the vibration isolator in increments of 5 mm, so 5 mm should be a good estimate

for dx.

We have measured the rotational noise of the optical table and used the above formulas
with explicit values for dz and dv to predict the resulting interferometer noise. We found
that the effect proportional to dv is almost certainly irrelevant, even for unrealistically
large horizontal velocity of 1 mm/s. The effect proportional to dx, however, can be more
substantial, especially if the active feedback is turned off. In that case it might cause

fluctuations of up to 3 pGal, corresponding to a S/N-ratio of 90/1.
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5.3.6 Measured noise

The noise observed during an interferometer measurement depends on the exact operating
parameters such as pulse separation and pulse length. Varying these parameters for both,
Doppler sensitive and Doppler insensitive interferometer configurations, provides useful in-
formation for disentangling the effects the various noise sources such as vibrations, phase
noise, etc. .

Our standard method of determining the S/N-ratio is to sit on the slope of an interfer-
ometer fringe and determine the variance within sets of 40 consecutive launches. While this
variance could potentially depend on the number of launches (see Sec. 5.1), we find that
this is not the case for our experiment and for fewer than ~ 100 launches (see Fig. 5.9(a)).

Calculating the two—sample variance 04(2,t) defined in Eq. 5.3 (or oa4(2,t) for Doppler
insensitive fringes) of a long sequence of measurements provides additional information.
Figure 5.9 shows these variances for a variety of measurement conditions.

One obvious feature is the clear 1/v/t dependence for fewer than ~100 launches. This
result justifies our previous definition of the S/N-ratio, since it shows that for sets of fewer
than 100 launches the noise of different launches is uncorrelated!. It also means that all
the noise can be attributed either to high frequency sources, with periods shorter than the
1.3s interval between launches, or to very low frequency effects with typical timescales of
several minutes or more. No dominant noise sources seem to exist with periods between 1
and 100 seconds.

Our main reason for calculating the two—sample variance was to determine up to what
time the 1/v/t dependence holds and to find the eventual flicker noise floor. For data taken
by sitting on the slope of a fringe (thin line in Fig. 5.9(a)) the increase of the noise around
t = 100s is probably caused by drifts (mostly PMT dark current) in the detection system.

Taking data by fitting full interferometer fringes is not vulnerable to such drifts and
therefore better suited for long term measurements. However, since data points at the
extrema of a fringe provide no phase information, and because of experimental overhead,
this method has slightly lower resolution at short times.

The thick line in Fig. 5.9(a) is for one of our multi-day gravity datasets which was
acquired this way and corrected for tides using a model that includes ocean loading effects

(see Sec. 4.3). The increase in noise around t = 2 x 10%s is probably due to residual tidal

HIn this case we have (S/N)~" = oas(t1), where Aty = 1.3s is the time between launches.
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Figure 5.9: Allan variance of interferometer measurements. (a) For Doppler sensitive con-
figuration with pulse separation T" = 160 ms and data taken either by sitting at the side
of a fringe (thin line) or by fitting 1 minute gravity fringes (thick line). (b) Comparison
between Doppler sensitive (thick lines) and insensitive (thin lines) configurations for pulse
spacings of "= 160ms (solid) and T" = 2ms (dotted).

effects. A diurnal (~ 12hour period) component with an amplitude of 4.5 pGal (compare

Fig. 4.5) would explain the peak at t = 4 x 10°s.

The high frequency noise, which affects every single launch in the same way, shows very
little dependence on the time between pulses and is also not very different for Doppler
sensitive and Doppler insensitive mode. The only times we have seen substantially lower
noise levels is when we either replaced our frequency multiplier chain with a microwave
synthesizer (HP-8665-A) or used much longer pulse lengths (up to 5ms, only possible in
Doppler free mode).

Table 5.2 shows some S/N-ratios obtained when using the microwave synthesizer. Note
that the changes in the noise level are rather small for the large pulse separation Doppler

sensitive fringes that we use for our gravity measurements.
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Frequency multiplier Microwave synthesizer

Dop. sen. Dop. insen. Dop. sen. Dop. insen. | Dop. insen.

80 us m-pulse | 80 us w-pulse | 80 us m-pulse | 80 us w-pulse | 2ms 7w-pulse

T =1ms 39 46
T =2ms 20 25
T = 160ms 14 22 18 33 50

Table 5.2: Signal-to—noise ratios for various interferometer configurations.

5.4 Discussion

The reasons for the current limitation of the measurement sensitivity are still not completely
clear. It is very likely that phase noise in the Raman beams, and to a lesser degree inten-
sity fluctuations, are the limiting factor for all Doppler insensitive measurements and short
time Doppler sensitive measurements. However, long time Doppler sensitive measurements,
which we use to measure gravity, suffer from an additional, yet unexplained noise contri-
bution. Possible candidates are high frequency vibrations or rotations, as well as potential
problems caused by the generation of the necessary frequency steps and chirps.

While it should be relatively easy to improve the Doppler free performance (by using a
better microwave source and actively stabilizing the Raman laser intensity), it is harder to
conceive improvements for the actual gravity measurements. Ilmproving vibration isolation
at high frequencies would be one option. Another course of action would be to change the
setup to allow higher repetition rates or longer pulse separations in order to explore a larger

parameter space in pursuit of the noise source.




Chapter 6

Systematic errors

An important property of the atomic fountain gravimeter is its ability to obtain an absolute
gravity value which is directly referenced to atomic standards. However, the ultimate
accuracy of the measurement still depends on our understanding of potential systematic
errors.

Gravity measurements differ from those of fundamental constants (Rydberg constant,
fine structure constant, ...) in that g is a site dependent quantity that also varies with time
and is affected by environmental conditions. Theoretical models of these effects are therefore
required to interpret the measurement results and their quality can be an important factor
in determining the final measurement precision and accuracy. The variable nature of g also
makes it more difficult to identify systematic errors of the instrument itself.

In this chapter we present our analysis of potential systematic errors. Related discussions
of systematic effects for atom interferometers and atomic clocks can be found in references

14, 25].

6.1 Displacements of the atomic transition frequency

6.1.1 AC Stark shifts

AC Stark shifts are of profound importance for light pulse atom interferometers. In the
case of 2-photon off-resonant Raman transitions they are intrinsically related to the Rabi
frequency and cannot be avoided.

The average AC Stark shift Q45 = (Q4C + Q1C)/2 (see Sec. 2.2) is always the same

avg

105
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for atoms in both paths of the interferometer, as long as one can neglect the intensity
variations of the Raman beams over the path separation. This component of the AC Stark
shift therefore leads to no observable phase shift.

The differential AC Stark shift 64¢ = Qﬁc — Qﬁc, on the other hand, can lead to an
observable phase shift. Combining the results for 7 and 7 pulses from Ref. [14], we find
that the resulting first order phase shift for a Mach—Zehnder type interferometer is given
by

AAC 63AC 51AC 6.1
Qb - Q_eﬁ_Q_eﬁ7 ()

where Q.g is the effective Rabi frequency and 5{%0 and (53‘?0 are the Stark shifts during
the first and last §—pulse, respectively. The interferometer is therefore only sensitive to
the difference in shifts during the two S—pulses. Since the Raman beam parameters are
generally the same for both pulses this means that the effects of AC Stark shifts mostly
cancel. However, the spreading of the atomic cloud with respect to the Gaussian Raman
laser intensity profile breaks the symmetry of the situation and causes a residual shift large
enough to be problematic.

This residual shift can be essentially eliminated by properly adjusting the detuning and
intensity of the Raman beams. To see how, we first write out both the differential AC Stark

shift

- Qi |? | Qi |2
* b — 4D, — A (6.2)
and the 2-photon Rabi frequency
QF Qop;
Q = M (6.3)

2014

i
in terms of the 1-photon Rabi frequencies €;; and detunings A, (see Sec. 2.2 or Ref.
[14]). The €y are determined by the Raman beam intensities and polarizations and can
be calculated using selection rules and the appropriate Clebsch—Gordon coefficients. For a
fixed ratio of Raman beam intensities (i.e., 1-photon Rabi frequencies) the AC Stark shift
is directly proportional to the effective Rabi frequency. As long as the Raman detuning
A is smaller than the hyperfine splitting of ~ 9.2 GHz, the minus sign in Eq. 6.2 makes
it possible to make the proportionality factor zero by choosing the correct intensity ratio.
This eliminates the differential AC Stark shifts, independent of the atoms position in the

Raman laser intensity profile.
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We have also determined the correct intensity ratio using an experimental method that
involves adding an additional Raman pulse to the interferometer sequence. It is illustrated
in Fig. 6.1. Figure 6.2(a) shows that the experimentally determined intensity ratio is a
function of the detuning A, in good agreement with the theoretical result obtained by
solving Eq. 6.2 for §4C = 0.

The Raman laser intensities are not actively stabilized and can change over the course of
an experiment. Even after the differential AC Stark shift has been eliminated by balancing
the Raman beams, it is therefore still important to know the residual sensitivity to small
changes in the intensity ratio. Figure 6.2(b) shows that for our standard experimental
configuration the measured gravity value is rather insensitive to changes in the intensity
ratio (which typically stays between 1.6 and 1.8). The associated uncertainty is £2 pGal.
To achieve sub puGal resolution it would be necessary to either reduce the sensitivity even

further or to implement active intensity stabilization.

6.1.2 DC Stark shifts

Two different effects of a static electric field have to be considered. The differential DC
Stark shift of the two involved hyperfine levels (F' =4, mp = 0 and F' = 3, mp = 0) may be
important since the atoms in the two interferometer paths are always in opposite different
states. The absolute (common mode) DC Stark shift of the two hyperfine levels may also
be important since the two interferometer paths are spatially separated. As long as this
separation is small, the resulting effect is proportional to the gradient of the absolute DC
Stark shift.

The differential DC Stark shift of the cesium ground state hyperfine splitting (mp =0
sublevels) is given [25, 45] by

BOMs _ 95x 10 PE?  or D9 pgioqp oz M2

e o e O

where the electric field F is in units of V/m. For a worst case estimate we assume that an
electric field of strength F is turned on only during the second half of the interferometer,
so that there is no cancelation due to reversal of the internal states. For a time T between

pulses this causes a gravity offset of

2
AP k00 E !

89 = Fen T (V/m)?

(6.5)
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Figure 6.1: Measurement of the differential AC Stark shift caused by imbalanced Raman
beams. An additional Raman pulse of variable length is added to the interferometer se-
quence. It is substantially detuned (~ 1MHz) from the Raman resonance so that it does
not actually drive a Raman transition. On the other hand, this detuning is small compared
to the 1-photon detuning A and the AC Stark shifts are therefore the same as during nor-
mal interferometer pulses. If the intensities of the beams are not properly balanced, then
the additional pulses cause an interferometer phase shift which is proportional to the pulse
length. The sign of the shift is different for pulses introduced during the first and second
half of the interferometer.

The results shown are for a detuning of A = 0.99 GHz from the F’ = 4 excited state and for
Ir—y/Ip—3 = 2 (Ip—4 and Ir_3 are the intensities of the Raman lasers coupling primarily
to the F' = 4 and F' = 3 ground states, respectively). One can now eliminate the differential
AC Stark shift by adjusting the intensity ratio until the phase shifts caused by the additional
pulses disappear (Ip=4/Ip=3 = 1.67 for A = 0.99 GHz).
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Figure 6.2: (a) Detuning dependence of the Raman laser intensity ratio at which the differ-
ential AC Stark shift vanishes. The data points are obtained using the method from Fig.
6.1, the solid line is the theoretical model described in the text. (b) Residual sensitivity of
the gravity measurement to small changes in the Raman laser intensity ratio, for a pulse
separation of T = 160 ms and a 1-photon detuning A = 0.99 GHz from the F’ = 4 excited
state. The solid line is a two parameter (offset, amplitude) fit using the theoretical model.

Accordingly, a field of 32V /cm would be necessary to cause a 1 pGal gravity shift for a
typical pulse separation of T'= 160 ms. For a more realistic situation, where the contribu-
tions from the first and second half of the interferometer would partly cancel, even stronger
fields would be required. Since the interaction region is surrounded by a graphite coated
aluminum tube, we can rule out electric fields of such magnitude. Therefore the differential
DC Stark shifts should not be an issue in our experiment.

The effect caused by the gradient of the absolute DC Stark shift is substantially more
problematic. The reason is that total the common mode DC Stark shift of both hyperfine
ground states, given by [46]

Hz
(V/m)2’

Awp—z ~ Awp—yq = 2raBE?  with  a=-1.00x 107" (6.6)

is much bigger than the differential frequency shift in equation (6.4). To find the gravity
offset caused by this effect we could first calculate the interferometer phase shift. But it is

possible to skip this step and get the same result by simply calculating the classical force
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on the atom in an inhomogeneous field:

F 1 oU 2h aOF
A = = -— = ——F. 6.7
g MCs mas 0T mas 2 0x (6.7)

Using this formula we can calculate the effect of an electric field Eg with a constant gradient
%—g = Fp/0.2m (reasonable given the dimensions of the interaction region). Under this
assumption a field of 1.8 V/em would be necessary to cause a 1 pGal gravity offset. While
this field strength is much lower then the 32V /cm from above, it is still bigger than what

one would expect in the interaction region. We therfore can also rule out this effect.

6.1.3 Zeeman shifts

In our interferometer the atoms are always kept in magnetic field insensitive states with
mp = 0. However, these states still show a quadratic Zeeman shift and for small magnetic

fields the resulting change of the cesium hyperfine frequency is given by
Afps = 427.45Hz/G2. (6.8)

This effect is big enough to require well controlled magnetic fields and extensive magnetic
shielding to achieve the millihertz frequency stability necessary for gravity measurements
at the 1 uGal level. Since the effect is quadratic in the magnetic field, it is desirable to
operate at the smallest possible bias field. However, a certain bias field strength is necessary
to define a proper quantization axis and to prevent Majorana spin flips when the atoms enter
the magnetically shielded region. Preferably, the field should also be big enough to separate
the frequencies of magnetic field sensitive transitions from the magnetic field insensitive
ones. Since we have to use relatively short Raman pulses (80 us m—pulse, 40 us S—pulse) to
address a reasonably wide atomic velocity distribution, this would require a bias field of at
least 0.15 Gauss.

In principle, it would be possible to estimate the estimate the effect of residual magnetic
field inhomogeneities theoretically. However, since the magnetic field distribution inside
the magnetic shield is relatively complex (see Fig. 6.3), experimental tests are easier and
more conclusive. The results in Fig. 6.4(a) indicate that the measured gravity value changes
substantially at strong bias fields. This makes it necessary to operate at weak bias fields
where, as shown in Fig. 6.4(b), there is no significant field dependence of the measured
gravity value.

While the data indicates that we could use bias field values up to 50 mG, this would

not be strong enough to separate the Zeeman components. To avoid partially overlapping
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Figure 6.3: Magnetic field inside magnetic shield assembly. Measured using magnetic field
sensitive Raman transition. (a) Strong bias field. Inhomogeneities dominated by solenoid
field. (b) Weak bias field. Inhomogeneities dominated by other field sources.
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Zeeman components we therefore choose to operate at a very small bias field, typically 2
mG@, where all the Zeeman components are completely overlapped. Under these conditions,
to avoid problems with magnetic field sensitive transitions, only atoms in the mp = 0
state can be allowed to enter the interferometer. This is taken care of by our elaborate
pre—selection sequence (Sec. 3.2.4). There could be some additional problems, like transfer
into other magnetic sublevels, but due to the many inherent symmetries of the measurement
these effects tend to cancel. More importantly, they would cause shifts that depend strongly
on the overall detuning A or the Raman beam polarizations, and no such dependence has
been observed experimentally. Therefore we conclude that magnetic fields are currently not
a problem.

There is an important difference between the quadratic Zeeman shift and the quadratic
Stark shift discussed earlier: The differential DC Stark of the two hyperfine levels is much
smaller than the common mode shift, which causes the second contribution discussed in
Sec. 6.1.2 to dominate. This is very different for the quadratic Zeeman shift, where the
two magnetic field insensitive hyperfine states shift by equal and opposite amounts®. This
contribution, equivalent to the classical force on the atom in an inhomogeneous magnetic

field, can therefore be neglected.

6.1.4 Cold collisions

There is one substantial drawback of using laser cooled atoms for atom interferometry. For
bosonic atoms at uK temperatures the collisional cross—sections, including those that cause
hyperfine frequency shifts, can get devastatingly large [47, 48]. For '*3Cs atoms in a equal
superposition of the F' = 3,mp = 0 and F' = 4, mpr = 0 hyperfine ground states it has been
measured by Gibble et.al. [47] to be (—15.841.4) mHz at a density of (1.040.6) x 107 cm ™2,

We now estimate the effect of such cold collisions on our atom interferometer, assuming

*This can be seen from the Breit-Rabi formula [25],

Whs grusBomr | whts dmp
his (F) = — - + —/1 2,
wnis(Fymr) = =55 n > V' Tttt
where
oo WitooueBo o AQIED
Awnfs 2h

The minus sign in front of the square root applies when F' = I — S, whereas the plus sign corresponds to

the case F =1+ S.
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that the spatial separation of the two paths does not affect the collisions. The MOT
originally captures about 5 x 108 atoms at a density of 8 x 10°cm™3, but magnetic state
and velocity preselection reduce the number of atoms to approximately 3 x 10° (Sec. 3.2.4).
Because of the severe vertical velocity preselection we can neglect the spreading of the
atomic cloud along the vertical axis. We furthermore neglect the initial horizontal size of
the cloud and assume that its horizontal radius is proportional to the time after launch.
We then find that the average atom density is p, = 6 x 107 cm™ during the first half of
the interferometer (130 ms — 290 ms after launch) and only g, = 1.5 x 10" cm™2 during the
second half (290 ms — 450 ms after launch). Because of cold collisions and according to the

formula

A¢ = KT(p—pa). (6.9)

where k is the frequency shift cross—section from above and T the interferometer pulse
spacing, this results in a phase shift of 0.6 mrad and an equivalent gravity offset of 0.2
uGal.

The effect would be approximately 15 times bigger without vertical velocity preselection,
and bigger by another factor of 3 without magnetic sublevel preselection (the cross—sections
for the other mp states are somewhat smaller). These preselection steps are therefore

essential.

6.2 Raman beams

6.2.1 Determination of the cesium D2-wavelength

From the formula A¢ = keggT? it is apparent that to obtain a gravity value one has to
know the Raman wave vector ke = |ko|+ |ki| or, in other words, the 65} jo, F' = 3 to 635,
F = 4 transition frequency to the same level of accuracy. At the time of our measurement
this frequency had only been determined by several wavemeter measurements with a range
of uncertainties between ~ 10 MHz and ~ 40 MHz (Fig. 6.5).

Using the frequency value by Avila et.al. [50] resulted in a big discrepancy between
the atom interferometer gravity value and the one measured by the falling corner—cube
gravimeter (see Sec. 4.4). However, Ted Hénsch and coworkers at the Max-Planck-Institute
for Quantum optics have recently performed a direct measurement of the cesium Do—

frequency and their preliminary result is about 50 MHz lower than the weighted average
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Figure 6.5: Measured values for the cesium Do—frequency (65,2, I = 3 to 6P5/p, F' = 4
transition). Erikson et.al. [49], Avila et.al. [50] and Carlson et.al. [51] used wavemeters
to measure the Do-wavelength. Weber & Sansonetti [52] performed a wavemeter measure-
ment of the Di—wavelength, the large error bars shown are due to the transfer. Hénsch
et.al. measured the Do—frequency directly. Our own value is calculated by comparing atom
interferometer and falling corner—cube measurements of g.
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of the wavemeter measurements. Using this value reduces the discrepancy between the
atom interferometer and classical gravity measurements to 7+ 7 uGal (see Sec. 7).
Figure 6.5 also shows a value for the cesium Ds—frequency calculated by comparing the

gravity measurements and assuming that both are correct.

6.2.2 Vertical alignment

To obtain the correct absolute gravity value the Raman wave vector has to be exactly

parallel to the local vector of gravity. The relation
Ab = g kaT? = |glker|T?cos0 (6.10)

shows that misalignment by an angle § will result in too low a gravity value. For small
angles this error is quadratic in 6. In order to achieve an accuracy of 1 uGal, the deviation
of the Raman beams from vertical must be less than 45 yrad. This direction is effectively
determined by the orientation of the retro reflection mirror, which in turn is controlled
by an active tilt stabilization system (Sec. 3.5.3). The electronic bubble level, mounted
rigidly to the mirror and ultimately responsible for the performance of the system, has been
calibrated to approximately b urad and the tilt error should therefore remain well below the
critical value.

It is possible that the calibration of the bubble level could change over time. Further-
more, a wedge in the top vacuum window could deflect the wave vector at the location of
the atoms relative to its direction at the mirror surface. To avoid this, we use windows
that are plane parallel to better than 10 urad, but they might be deformed by the pressure
difference.

The most straightforward experimental test of the tilt alignment uses the atomic signal
itself. Fig. 6.6 shows the change in measured gravity when the whole experimental setup
is tilted over a substantial angular range. Using relation 6.10 we can use this data to find
the correct setpoint for the active tilt control system and check the calibration of the tilt
sensor. Since the result agrees to 10 urad with the previous calibration of the tilt sensor we

expect the resulting gravity error to be less than 0.05 pGal.

6.2.3 Retro—reflection alignment

Any failure to properly retro-reflect the Raman beams affects the measurement result by

changing the magnitude of the wave vector. If the angle of incidence of the incoming Raman
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Figure 6.6: Tilt dependence of gravity measurements. The active tilt control system is used
to tilt the whole experiment in the East-West as well as the North-South direction. The
measured gravity value (dots) varies as a function of tilt. Using to equation 6.10 to fit (solid
lines) this data allows us to find the proper setpoint (Apex of the parabolas) for the control
system and check the calibration of the electronic tilt sensor.

beams at the mirror deviates from 90 degrees by an angle ¥ we have
ket| = ([ka|+ [k2|)cos?, (6.11)

which for small angles causes an error quadratic in 4.

Currently, this retro reflection is checked rather crudely by aperturing the Raman beams
down to 2mm at a distance of approximately 3 m from the retro—reflection mirror and then
centering the reflected beams on the same aperture. This can be done quite easily with an
error of less then 0.2 mm, corresponding to an angle of 30 yrad and a measurement error of
less than 1 puGal.

In order to validate this alighment procedure we have intentionally tilted the incoming
Raman beam and observed the change in the measured gravity value (Fig. 6.7). Fitting
this dataset using equation 6.11 we typically find an tilt angle for proper retro reflection

that differs from the one obtained by the aperture method by less than 40 urad.
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Figure 6.7: Retro-reflection of the Raman beams. The measured gravity value (dots) varies
when one of the folding mirrors in the Raman beam path is used to misalign the retro-
relection. We can use equation 6.11 to fit (solid lines) this data and find the proper alignment
(Apex of the parabolas). The curvature of the two parabolas is different because of the
geometry of the mirror mount.

Even after using the aperture alignment method we still have to expect an error as large
as —1 uGal. Since the angular direction of the incoming Raman beams tends to drift, one

has to check this alignment frequently.

6.2.4 Wavefront curvature

The theoretical derivation of the interferometer phase shift assumes the Raman beams to
be ideal plane waves. Our Raman beams, on the other hand, are Gaussian laser beams
(Bessel beams when a pinhole is used for spatial filtering). The wavefronts of Gaussian
beams are spherical and can be approximated by plane waves only for distances from the
beam waist that are much smaller than the Rayleigh length zg = mug /A. For sufficiently
large, well collimated Gaussian beams this distance can be rather large — 575 m for the
2.5 ¢cm diameter beams in our setup — but our extreme accuracy requirements make further

investigation necessary.
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Figure 6.8: Change in the measured gravity value (dots) when changing the Raman beams
wavefront curvature by moving the collimation lens. The solid lines are parabolic fits. The
x-axis has an arbitrary offsets.

We have investigated this effect by moving the collimation lens (1.5m focal length)
over some distance, which causes substantial changes of the wavefront curvature in the
interaction region. The parabolic dependence of the observed shift (Fig. 6.8) agrees with
theoretical predictions [14]. It is also obvious that rather extreme movements of the lens
are required to produce a relevant effect. Since we usually collimate the Raman beams at a
level that corresponds to a lens displacement of only 1 mm, we conclude that errors because

of wavefront curvature are well below 1 pGal.

6.2.5 Speckle

We have also considered the effect of the more local wavefront perturbations caused by
optical scatterers and imperfect optical elements. They can be very complicated and in
more severe cases are generally referred to as speckle [53, 54].

We have investigated this effect by looking for observable changes while making things
worse intentionally — here by sprinkling baby powder (Longs Drugs store brand) onto a
glass plate inserted into the beam path. Fig. 6.9 shows the effect of this rather drastic
procedure as observed by a CCD chip illuminated directly by the Raman beams.

Amazingly, this procedure did not result in any significant gravity offsets (Fig. 6.10),
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Figure 6.9: Local intensity variations of the Raman beams, observed by direct illumination
of a CCD (1/2-inch wide) inserted into the beams after they passed through the vacuum
chamber. (a) The first picture shows the speckle pattern generated by a baby-powder
covered glass plate inserted into the beams. (b) The second picture shows the intensity
distribution without this additional plate. Only a few diffraction rings, caused by small dirt
particles on the lower vacuum chamber window, are visible.
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Figure 6.10: Effect of speckle on the measured gravity value. The open squares are mea-
surements taken with a glass plate, covered with variable amounts of baby powder, inserted
into the Raman beams before the vacuum chamber. The solid dots are measurements with-
out this additional plate. They are necessary for comparison, since gravity changes over
the course of the measurement. While adding more powder decreases the fringe contrast
substantially, it does not have any significant effect on the measured gravity value. The
small offset between the two datasets is caused by the small wedge of the glass plate.



120 CHAPTER 6. SYSTEMATIC ERRORS

even in extreme cases with enough powder on the window to reduce the interferometer
contrast to less than 25 %. Therefore, given that our optics are generally much cleaner, we

rule out speckle as the cause of any relevant error.

6.2.6 Standing waves and polarization quality

The presence of a strong standing wave component in the Raman beams can cause substan-
tial systematic errors, mostly caused by spatially varying AC Stark shifts. The worst case
scenario, direct retro-reflection without change of polarization, has been discussed elsewhere
in great detail [14].

It would be ideal to avoid standing waves by using two independent Raman beams, but
then we would loose the many benefits and ease of alignment afforded by our current retro—
reflection setup (Sec. 3.5). Instead, we use a setup that substantially reduces the standing

wave effect by inserting a %fwaveplate in front of the retro-reflection mirror. The resulting

+ _ 0% polarization configurations do not cause spatially varying AC Stark shifts

linllinor o
for atoms in mp = 0 states and therefore eliminate the primary cause of systematic errors.

Misalignment of the %fwaveplates and unwanted reflections from optical surfaces can
reintroduce small AC Stark shift variations. Reflections from tilted surfaces will also intro-
duce light field components with different wave vectors. The systematic errors caused by
these effects are probably small. This is confirmed by experimental tests which show no
significant effect due to misaligned waveplates or partially reflecting glass plates introduced

into the beam path. Therefore we conclude that standing waves are not a problem at our

current accuracy level.

6.2.7 Refractive index of background vapor

The refractive index of the background vapor can potentially modify the wave vector of the
Raman beams and thereby cause a shift in the measured gravity value.

Generally one would assume the refractive index inside an ultra high vacuum system
to be sufficiently close unity. However, a substantial fraction of the vapor pressure is due
to cesium vapor. This will cause a substantially increased refractive index for the Raman
beams since their frequency is close to a cesium transition. We therefore estimate at what
cesium partial pressure this would become a problem.

The refractive index is related to the complex absorption coefficient by Anpet = Nyet—1 =
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Ima/k [26]. We have

no 1 1) 1
Ima = — (6.12)
5 ’
2 (1) /) 1+ (Fmmm)?
which in the far detuning limit reduces to
/2
Ima = %% (6.13)

Here s is the saturation parameter, n the atomic number density and o the absorption
cross section on resonance. For circular polarized light, and after averaging over all excited
states, the absorption cross section is 2.37 x 1079 ¢cm? for atoms equally distributed among
all magnetic sublevels of the F = 4 state and 2.65 x 107% ¢cm? in case of the F' = 3 state.
We approximate both numbers by 2.5 x 10~? em?2, assume that each Raman beam interacts
only with atoms in one of the two hyperfine state and that the atoms are equally distributed
among these, neglect the Doppler broadening as well as the excited state hyperfine splitting,
use the relation 1079 torr ~ 3.2 x 107 #/cm3 for cesium at room temperature, and assume
a detuning A of 1 GHz. This leads to the relation (Ag/g)/p = 0.8 torr~" and implies that
the partial pressure of cesium has to be less then 1.2 x 1079 torr to keep the gravity offset
below 1 pGal.

Our system, which is a hybrid between vapor cell MOT and beam loaded MOT, exhibits
large differences in the local cesium density. It is therefore difficult to estimate the cesium
partial pressure in the interaction region itself, but absorption measurements indicate that
it is less than 107 '%torr. The refractive index of the background vapor should therefore

cause a shift of less than 0.1 uGal.

6.2.8 Refractive index of cold atom cloud

The refractive index of the cold atoms themselves could also cause problems. Luckily, a
constant refractive index does not have any substantial effect, since the atoms cause only a
local deformation of the light field “ruler” that travels together with the atoms and therefore
cancels in the final measurement. However, the density and optical thickness of the atom
cloud changes along its trajectory (Sec. 6.1.4), causing time dependent phase shifts and
variations of the refractive index.

We now estimate the most important effect, which is the phase delay of the retro-
reflected Raman beam as it passes the cloud on its way up. Since the optical thickness of the

cloud decreases as a function of time, so does the phase delay. This is equivalent to reducing
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the optical path length the Raman beam has to travel, which in turn is indistinguishable
a downward movement of the retro-reflection mirror. Since this decrease of the optical
thickness is nonlinear, this corresponds to an apparent upward acceleration and therefore
causes a measurement error. Under the same assumptions for the expanding atomic cloud
as in Sec. 6.1.4 and using the appropriate cross section of 2.31 x 1079 cm? for atoms in
the mp = 0 sublevel, we find a gravity shift of 2 x 10713 g at a detuning of A = 1 GHz.

Therefore we can surely neglect this effect, even without any initial preselection.

6.2.9 Leakage light

During the interferometer measurement the even very low levels of light close to the cesium
resonance can cause substantial measurement errors. Leakage light from the trapping,
repumping and detection beams is especially dangerous since it has the smallest detuning.
Most of the laser system is therefore enclosed in black cardboard boxes and mechanical
shutters are used complete shut—off of all such beams.

The Raman beams, however, are only switched off by an AOM and the atoms are there-
fore exposed to some leakage light in between Raman pulses. The only realistic influence
of this light, which for the majority of time it is far detuned from any possible Raman
transition, would be due to AC Stark shifts.

The AOM (with an additional RF switch in its driving circuitry) reduces the Raman
beam intensity by at least a factor of 10° when turned off . On the other hand, the leakage
light is on for about 160 ms between pulses, much longer than the 80 us duration of a typical
Raman pulse. From the data in Fig. 6.1 we know that even for not well balanced beam
intensities a 0.1 ms pulse at full intensity would cause a gravity shift of maximally 250 puGal.
A 160 ms pulse of light, attenuated by a factor of 10°, would therefore cause a maximum
shift of 4 pGal. Usually, though, the intensities are usually substantially better balanced
and cancelation due to the inherent symmetry of the interferometer should reduce this effect
by at least another order of magnitude. We therfore conclude that the resulting gravity
offset should be less than 0.1 uGal.

6.3 Frequency control and pulse timing

Among all physical quantities, time and frequency are generally the ones most accessible to

current experimental methods and can be measured to the highest precision and accuracy.
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Many precision experiments therefore transform the ultimately intended measurement into
one of time and frequency. Following this philosophy, our atom interferometer effectively
measures g by converting it into a phase shift value that depends only on the frequency of
the Raman beams and the time between light pulses.

Certain features of our experiment further tailor this process to operate in a regime
where current technology works best. The use of stimulated Raman transitions alleviates
the requirement of milli—hertz level optical frequency control and requires such precision only
in the microwave and radio frequency range where it is much easier to achieve. Chirping the
Raman frequency difference to nearly cancel the gravity induced Doppler shift, in addition
to keeping the atoms in resonance, reduces the sensitivity to the timing of the light pulses.
This is highly beneficial, since frequencies can be controlled even better than short time
intervals.

Even with these methods timing and frequency control are not trivial at the level re-
quired to achieve the targeted accuracy of 1 pGal. In marked contrast to most atomic
physics experiments where RF and microwave components can usually be considered ideal,
we therfore have to scrutinize every single component of the frequency control and timing

system.

6.3.1 Frequency dependent phase shifts

Changing the Raman frequency to keep the atoms in resonance can introduce severe sys-
tematic errors since then group delay (second or higher order phase shifts as a function of
frequency) exactly mimics an additional gravity signal. Such frequency dependent phase
shifts can for example be introduced through filters, spurious frequency components from
the direct digital synthesis process, interference effects due to back reflections of RF power
or RF leakage along alternate paths.

We attempted an independent measurement of this effect. Ideally, a group delay mea-
surement would look at the system as a whole, starting with the mathematical description of
the frequency chirp and then analyzing the phase shift of the Raman beams themselves. But
technical reasons, mainly due to the nature of the DDS process, require that measurement
be divided into at least two parts.

The phase shifts of the DDS synthesizer are the hardest to determine, because the
chirped output frequency is different from the input frequency, i.e. the fixed 10 MHz refer-

ence. This precludes using standard vector network analysis techniques. Instead, we use
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Figure 6.11: Frequency dependent phase shifts. (a) Tektronics AFG 2020 DDS synthesizer
with internal 100 MHz anti-aliasing filter. Measured using fast digital scope. (b) Remaining
system, from output of the DDS synthesizer to Raman beams. Measured using vector
network analysis.

a fast digital scope to measure the delay from a frequency update command to the next
zero crossing of the output waveform. Since the update command is internally synchro-
nized with the phase accumulator of the Tektronics DDS synthesizer, and therefore the
theoretical phase, this measurement of the real output phase allows us to determine the
frequency dependent phase shift introduced by the synthesizer. Fig. 6.11(a) shows the mea-
sured phase shifts. For our standard chirp centered around 40 MHz we find an additional
phase shift Agrp = ¢(43.68 MHz) — 2¢(40 MHz) + ¢(36.32 MHz) ~ 15 mrad, corresponding
to a 4 pGal gravity offset. For some of our most recent measurements we have therefore
moved the chirp center frequency to 16 MHz where the group delay is minimal and we only

expect a gravity offset of 0.4 uGal.

The remaining system (starting at the output of the DDS synthesizer) can be inves-
tigated by standard vector network analysis. The result is plotted in Fig. 6.11(b). The
global curvature of this response graph would correspond to a gravity offset of 2.2 uGal.
The smaller scale wiggles visible in the graph would cause additional puGal scale offsets
depending on details like the central frequency of the chirp or the time between Raman
pulses. However, since we had to introduce many additional components to perform this

measurement we can not be sure (without much more involved calibration procedures) if
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Figure 6.12: Effect of frequency dependent phase shifts. The measured gravity value changes
if the center frequency of the DDS synthesizer chirp is changed from its usual 40 Mhz value
(compensated for by changing the offset frequency of the Raman laser phase lock, see Sec.
3.4.2). Reversing the direction of the photon recoil also means reversing the direction of the
chirp and the sign of the gravity shift. The average value is therefore much less sensitive to
this effect. Interferometer pulse separation 1T = 160 ms.

all of the observed features are real or if they might be artifacts.

Since the measurements described above are not fully conclusive we use a nice property
of atom interferometer to measure and cancel the group delay effect. Reversing the direc-
tion of the photon recoil also means changing the direction of the RF chirp and the sign
of the gravity offset. One can therefore alternate between the two interferometer configu-
rations and calculate the average value, which should be free group delay related offsets.
The differential value is actually a measurement of the group delay. Fig. 6.12 illustrates
the effectiveness of this method. However, changing the recoil also introduces some other
changes, like slightly altered trajectories or pulse times, which may cause additional offsets.
In order to exactly reverse the chirp, with the same center frequency, it is for example

necessary to apply the middle interferometer pulse after, instead of before the atoms reach
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Figure 6.13: Changing the direction of photon recoil and RF chirp cancels most RF phase
shift related gravity offsets. But one either has to change either the time of the interfer-
ometer m—pulse (early = before apex of trajectory, late = after) or the center frequency
of the RF chirp (see graph). The graph shows measurement results for all four possible
combinations. They are usually averaged to cancel most of the effect.

the apex of their trajectory (or vice versa)f. To account for this, we often take gravity data
for all four possible combinations of recoil direction and pulse time, as shown in Fig. 6.13.

In summary, the method of alternating between differential recoil configurations can
reduce the sensitivity to imperfections of the RF system substantially, but the remain-
ing uncertainties are still some of the most important ones affecting the atomic fountain
gravimeter. From the uncertainty of measurements using different center frequencies and

recoil directions we estimate a residual uncertainty of 2 pGal.

6.3.2 Transient phase shifts

The necessity to pulse the Raman beams introduces another potential pitfall. Essentially all

methods for switching RF power or light fields also show some amount of phase modulation.

Since we use retro-reflected Raman beams this pulse can not be applied exactly at the apex. Otherwise,
it would also drive unwanted Doppler insensitive Raman transitions.
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Figure 6.14: Transient phase shifts during Raman pulses. (a)(b) Amplitude (not intensity)
and amplitude weighted phases shift of the Raman beat note during a short pulse. The rise
and fall times are determined by the finite beam size and the speed of sound in the switching
AOM. The RF power driving the AOM is switched much faster (~ 5ns) by an GaAS RF
switch. There are substantial phase shifts, but the integrated effect is small because of the
asymmetry. (c¢)(d) Similar data for a longer pulse that is turned on and off slowly(~ 50ns)
by ramping the control voltage to the RF switch. The amplitude weighted phase shifts are
smaller, but persist for longer times. Since the trace is not anti—symmetric anymore, the
integrated effect is substantially bigger.

In our experiment the Raman light is controlled by an AOM and phase transients could be
introduced by the GaAs switch controlling the RF drive power or by intrinsic properties of
the AOM itself. It is advisable to make the switching process for both Raman beams as
identical as possible. Our current setup therefore uses a single AOM to switch both beams

which also have identical polarizations.

To investigate this effect we irradiate an independent fast photodiode with a short pulse
of Raman light, mix the observed beat note down to a convienient frequency of 80 MHz and
digitize the signal at 2 Gsamples/s. Using a Fourier transform method [55] we can then
extract both phase and amplitude information independently. We can also calculate the

amplitude weighted phase shifts as shown in Fig. 6.14. This data shows that substantial
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phase transients are present. The actual experiment, however, uses much longer square
pulse which reduces the relative duration of the switching transients. Averaged over a
40 mus pulse, one of the transient phase shifts in Fig. 6.14 would only be ~ .25 mrad,
corresponding to 0.07 uGal. Additional cancelation due to the anti—symmetry of the phase
shifts during a single pulse and the symmetry of the pulse sequency would reduce this effect
even further.

There are situations, though, where these transient effects might become important. It
would definitely be dangerous to switch the two Raman beams separately, using different
AOM. Furthermore, it would be problematic to use very short pulses or to replace the
square pulses with such of shaped intensity profiles, for example Blackman pulses.

From the formula A¢ = gkegT? one would naively expect that a 1 part in 10° measure-
ment of g would require knowing the interferometer pulse spacing 7" with similar accuracy.
For our typical 160 ms spacing this corresponds to only 80 ps, a requirement that is essen-
tially impossible to fulfill using standard beam switching methods.

Fortunately, the chirping of the Raman frequency makes the timing requirements much
less severe. This is easy to see in the case where the chirp is adjusted to ezxactly cancel the
Doppler shift due to gravity. A change in the time T will change the fringe period, but the
position of the central fringe remains the same since it only depends on the chirp rate, a
condition that is obviously independent of the time between pulses.

The situation is slightly different when the continuous chirp is approximated by switching
between three fixed frequencies. In that case we are once again sensitive to the pulse timing,
but now small timing errors enter only quadratically. For small errors §¢; in the time of the

three interferometer pulses we find

A St7 + 6t3 + 6t3
29 _ ot tot ¥ oly ) (6.14)
g 272
This is confirmed by the experimental data in Fig. 6.15. Since we can easily achieve a timing
accuracy of 200 ns (AOM rise time), the possible error due to pulse timing is less than 0.01

uGal.

6.3.3 Length and Intensity of Raman pulses

Variations in the length and intensity of the Raman pulse are another potential sources of
trouble. For a single pulse the effect of such variations has been worked out in [14]. A

priori, it is big enough to be of concern if the Raman beam intensities, as in our setup, are
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Figure 6.15: Effect of small error in the Raman pulse timing on the measured gravity value
(dots). The solid lines are parabolic fits, in agreement with the theoretical predictions. (a)
Changing the time of both Z—pulses by equal but opposite amounts. (b) Changing the time
of the first §—pulse only. (c) Changing the time of the 7—pulse.

not actively stabilized. But as long as these variations happen for all three interferometer
pulses simultaneously, the effects chancel almost completely due to the symmetry of the
T _ T T _ T

x .
5 — T — 5 pulse sequence. Even when we use a 7 — 5 — & pulse sequence, corresponding to

a rather drastic error in intensity, the shift in measured gravity is at most a few pGal.

Other tests also confirm that the measured gravity value remains unchanged when short,
high intensity pulses are replaced with longer, low intensity pulses while keeping the pulse
area constant and maintaining the correct time between pulses (Sec. 2.2 for the proper
definition of T"). Intensity variations among the pulses of the interferometer are sufficiently

small to be neglected. We therefore conclude that the error due to these effects is less than
1 pGal.

6.3.4 Chirp of Raman pulses

We often perform gravity measurements by simply switching between fixed Raman frequen-
cies instead of applying a continuous chirp. In this case the atoms, in their own free falling

reference frame, see an apparent chirp of the Raman beams during each single pulse. For
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Figure 6.16: Effect of chirp during Raman pulses. We can introduce chirps of the Raman
frequencies during each interferometer pulse. A chirp rate of 22.99373 MHz/s exactly cancels
the gravitational chirp, the ideal situation. But even for very different chirp rates the gravity
value is almost unaffected.

finite length pulses this will cause phase shifts (Sec. 2.2). For typical experimental param-
eters the effect of these shifts is rather small as a result of the symmetry of the & — 7 — %
pulse sequence.

It is still preferable to eliminate this concern completely by using the second phase locked
loop in our setup (Sec. 3.4.2) to cancel the gravitational chirp during each individual pulse.
The same method can also be used to deliberately introduce chirps of the wrong sign or
magnitude. The result is shown in Fig. 6.16 and clearly confirms the theoretical prediction

that the measurement is rather insensitive to such chirps.

6.3.5 Detuning of Raman pulses

Using the § — 7 — & pulse sequence makes the interferometer intrinsically insensitive to
detunings from the exact Raman resonance condition, a feature absolutely necessary con-
sidering the velocity spread of the atoms and the corresponding Doppler shifts. This does

not rule out small residual offsets when the Raman frequency is not properly centered with
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respect to the atomic Doppler distribution. We found experimentally that this gravity offset
is linearly proportional to the average detuning with a slope of ~ 1 uGal/kHz.

We now estimate if frequency offsets of this size could occur. Since all the Raman
frequencies are referenced to a Loran-C receiver, and thereby ultimately an atomic clock,
they are generally known to better than 5 x 10712, or 0.05 Hz. The resonance can be easily
located to better than 100 Hz and, because of the velocity preselection, is mostly insensitive
to small changes in the atomic velocity distribution. This resulting gravity offset would be

approximately 0.1 uGal.

6.4 Synchronous noise

In contrast to a continuous measurement, noise synchronized with the data taking process
of a pulsed experiment does generally not average out over time but causes an systematic
offset. Vibrations, stray light and electromagnetic interference are just a few examples of
the multitude of possible culprits. Modifying the timing of the experiment to ascertain
which of them are present is limited by the existence of many timing constraints and the
unavoidable interdependence of timing parameters with others, for example spatial position

and frequency.

6.4.1 60 Hz Line noise

If the experiment is line triggered, then line noise (60 Hz) is an obvious source of trouble,
and Fig. 6.17 shows that it indeed has an substantial effect (up to 5 uGal) on our gravity
measurement. We therefore do not line trigger our experiment during gravity measurements
in order to make the effect average out over time, assuming that the system’s response to
the 60 Hz disturbance is linear. In this mode of operation the effect then becomes just

another source of noise.

6.4.2 Magnetic sensitivity of Seismometer

The central component of the active vibration isolation system is a commercial low frequency
accelerometer, not specifically designed for use in feedback systems but for applications in
seismology and geophysics. When performing measurements for these purposes, the seis-

mometer is usually located either out in the field or in specially constructed seismic vaults.
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Figure 6.17: Effect of 60 Hz line noise. Graphs (a) and (b) show the changes in the
measured gravity value as a function of the delay between interferometer pulse sequence
and line trigger. The line trigger phase differs by 172.8°, and the resulting change in the
sign of the sinusoidal offset clearly indicates that it is due to 60 Hz line noise. The linear
slope is caused by other effects. Graph (c¢) demonstrates that the effect line noise effect
averages out if the experiment is not line triggered.

In neither case is it subjected to substantial electromagnetic interference and accordingly
the instrument has not been designed with special precautions to control such influences.

The situation in the laboratory is very different, with the seismometer exposed to ex-
ternal disturbances of various types. Many of them are synchronized with the experimental
cycle and could therefore not just lead to increased noise but result in systematic errors.
In the following we will analyze the effect due to pulsed magnetic fields to which the seis-
mometer is especially susceptible.

The seismometer will mistakenly interpret any change in the external magnetic field
as an acceleration and the feedback loop, attempting to compensate, will introduce a real
acceleration of the retro reflection mirror in the opposite direction. Since the acceleration
of the atoms is measured relative to this mirror this in turn will cause a systematic mea-
surement error. The precise size of this error will depend on details like the parameters of
the feedback loop or the duty cycle of the magnetic field, but it will generally be of the
same magnitude as the fake acceleration.

For our setup pulsing of both the trapping coils and the Helmholtz coil assembly can
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Figure 6.18: Effect of pulses magnetic fields due to the magnetic field sensitivity of the
seismometer in the vibration isolation system. In order to test the effect, we extended the
normal cycle time of the experiment from 1.3s to 2.0 s by inserting a delay before reloading
the MOT. During this time interval we can pulse on the Helmholtz coils to produce a
magnetic field either equivalent to that used for ~ 600 ms during the normal experimental
cycle, or with opposite sign. Graph (a) shows that even with a magnetic shield around
the seismometer itself the measured gravity value is strongly affected by these pulses. If we
pulse on the MOT trapping coils during the additional time interval, we find a similar effect.
For standard measurement sequence the expected gravity shift due to this effect should be
of approximately the same magnitude. Graph (b) shows that adding additional magnetic
shielding around the vibration isolator reduces the effect to below our current measurement
resolution. The global slope of the data is there since we did not correct for tidal effects
during this measurement.
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result in field strengths of several hundred mG at the location of the vibration isolator.
Together with the measured magnetic field sensitivity of ~ 150 uGal/Gauss of our partic-
ular version of the CMG-3 seismometer this implies unacceptably big errors. Therefore
the seismometer was fitted with a magnetic shield (Sec. 3.5.1) even before assembling the
system, reducing its magnetic field sensitivity by at least a factor of 10. However, even
this improvement does not reduce the effect sufficiently, as is clearly demonstrated by the
experimental test data in Fig. 6.18 which predicts an gravity offset as big as 10 uGal for a
typical measurement configuration.

To reduce this effect to acceptable levels we have therefore enclosed the whole vibration
isolator assembly with an additional magnetic shield. The second graph in Fig. 6.18 indicates

that this is sufficient down to the 1 pGal level.

Other noise sources

Problems due to other sources of synchronous noise are much harder to identify. Some of

irregularities in the data presented in Sec. 6.7 might be related to this problem.

6.5 Fundamental

6.5.1 Coriolis force and Sagnac effect

Atom interferometers are intrinsically sensitive to all types of inertial forces. Our setup
is specifically designed to be sensitive only to the acceleration due to gravity, but even
small misalignments can make it susceptible to Coriolis forces. Some Coriolis forces, for
example those caused by rotational noise of experimental setup, are avoidable. But since
our experiment is performed in a terrestrial laboratory, the Coriolis forces due to Earth’s
rotation are always present and can cause severe systematic errors if not properly accounted
for.

The atoms in the atomic fountain, though laser cooled, still have a certain horizontal
velocity spread. If we trace the trajectory of an atom that has a non zero initial horizontal
velocity, we find that the two interferometer paths to enclose a finite spatial area (Fig. 6.19).
Whenever this happens the atom interferometers becomes sensitive to rotations. This is

also known as the Sagnac effect. For a Mach-Zehnder type configuration the resulting phase
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shift is given by

Ao = %mn-A = 20 (vox ke)T?, (6.15)

where vg is the initial velocity and A a vector normal to the enclosed area and with a length

proportional to its size. The corresponding gravity offset,
Ag = 2Q-(vp X Vi), (6.16)

is exactly what one would find by calculating the classical Coriolis acceleration. All these
formulas also remain valid in the presence of a constant gravitational field.

Substituting the Earth’s rotation rate Q = 7.292 x 10~ °rad/s (one rotation per one
23hrs 56min 4sec sidereal day, not one solar day) and the geographical latitude of our
laboratory (37°N) we find that the initial Fast-West transverse velocity has to be less than
8.6 x 107° m/s to achieve 1 uGal accuracy. In other words, since the total time of flight is
610 ms, the atoms have to return to within 52um of their initial position.

The atoms in the atomic fountain have a certain velocity distribution, so what matters
is the awverage horizontal velocity of all the detected atoms. Within limits, we can adjust
this average velocity by changing the size and position of the detection region, either by
moving the excitation beam or the aperture in front of the PMT. Fig. 6.19 shows that we
can easily detect Earth’s rotation using this method. It also demonstrates that the effect is
big enough to cause devastating systematic errors even for small misalignments.

It would be possible to reduce this effect by transverse velocity preselection, but we
could not use this method due to lack of optical access. Instead, we use the interferometer
signal itself to achieve the proper alignment. The effect of Earths rotation is linear in
the detection position and cannot give us the required information. However, we can find
the correct position of the detection region — where the Coriolis effect vanishes — by
intentionally introducing additional, well-defined rotations. Fig. 6.19 demonstrates how
this can be done by shaking the table so that is rotating clockwise and counter—clockwise
during alternating launches of the atoms.

This method can in principle provide the required alignment accuracy, but only if it is
implemented with extreme care. 1t is extremely important to rotate the experimental setup
around a point directly below the sensitive spot of the vibration isolator. Otherwise even
the excellent performance of the 1D vibration isolation system is not sufficient to suppress
the vertical accelerations introduced by the shaking, and as a result we find an erroneous

value for the Coriolis insensitive detection beam position.
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Figure 6.19: Effect of Coriolis forces on the measured gravity value. (a)(b) For atoms with
non zero horizontal velocities the two interferometer paths enclose a spatial area , which
makes the interferometer sensitive to Coriolis forces. (¢) By moving the detection beam, we
can preferentially select atoms which have different horizontal velocity components, resulting
in a different magnitude and sign of the interferometer phase shift (which corresponds to
a certain gravity offset) cause by the same rotation. (d) Using this method, we can easily
detect Earth’s rotation (circles). The other symbols show the additional gravity shifts
produced by intentionally rotating the optical table clockwise and counter-clockwise. The
intersection of the lines marks the detection beam position at which the Coriolis effect
vanishes. All measurements use a pulse separation of T' = 160 ms.
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It is also important to adjust the phase of the sinusoidal table rotation such that the
instantaneous angular velocity is maximal (Q = 0) at the time of the m—pulse. Otherwise,
the measurement becomes sensitive to horizontal displacements of the atoms with respect
to the sensitive spot of the vibration isolator (Sec. 5.3.5). This in turn can result in a wrong
value for the correct detection beam position.

Finally, since our laboratory is not ezactly North-South oriented, it is also important to
perform the Coriolis calibration by shaking the table along both axes.

We have found that the direction of the launch changes over time scales of several hours.
Long term gravity measurements using the current setup therefore require frequent checks
of the Coriolis calibration. Overall, sensitivity to Coriolis forces remains the dominant

problem for the current experimental setup and seems to limit the current accuracy to

approximately 2 pGal.

6.5.2 Gravity gradients

Gravitational fields are typically not uniform but exhibit some degree of spatial variation.
The inverse square law dependence of Earth’s gravitational field results in a vertical gravity
gradient of approximately 300 uGal/m at its surface. Variations in the local mass distribu-
tion due to geological features can change this value significantly.

This effect has to be taken into account when analyzing the interferometer data since
along their trajectory the atoms encounter changes in gravity that are large compared to
the targeted measurement accuracy of 1 uGal. As long as the gravity gradient can be
considered linear over the ~ 10cm length scale of the atomic fountain, we easily treat it
using Eq. 2.12 from the theory section. Nonlinearities in the gravity gradient, on the other
hand, would complicate the analysis of the atom interferometer data substantially. They
could be caused by local mass distributions in the building, the laboratory or even the
measurement apparatus itself.

The gravitational gradient in the measurement region was estimated to be slightly higher
than the free space gravity gradient due to the proximity of the apparatus. Some nonlin-
earities may also be introduced by the magnetic shield and the aluminum spacers holding
it together. We have attempted to measure this gradient experimentally, using the atom
interferometer itself.

To vary the vertical position of the interferometer within the measurement region, we

change the timing and velocity of the atomic launch. We keep all other parameters (Raman
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Figure 6.20: Measurement of gravitational gradient inside the interaction region. The data
is obtained by using a smaller atomic fountain (pulse spacing T" = 90ms) and moving it
up and down inside the measurement region by adjusting the launch parameters. The solid
line is a linear fit.

frequency, pulse timing, ...) constant to insure that any small systematic effects associated
with them cancel. The particular method that we employ to achieve this rules out using
velocity preselection, but this mostly results in a loss of fringe contrast with no further bad

consequences.

We also rotate the optical table to cancel Earth’s rotation. Otherwise, the changes
in the atomic trajectories could make the measurement sensitive to Coriolis forces. Since
the magnetically shield region has a finite length, we have to reduce the time T between
Raman pulses to 90 ms in order to get a smaller fountain and gain some space to move it
up and down. This reduces the measurement sensitivity substantially. Together with the
fact that the table rotates in the correct direction only for every second launch, this leads
to measurement times 20 times longer than under normal circumstances and makes it very

difficult to obtain a good measurement resolution.

The result of the measurement is shown in Fig. 6.20. It demonstrates that the gravity

gradient in the measurement region is essentially linear. From a linear fit of the data
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we obtain a value of 278 + 31 uGal/m. This agrees well with the independently measured
293+ 10 pGal/m outside the vacuum chamber. Given these results conclude that the gravity
gradient inside the measurement region is known well enough not to cause problems at our
current measurements accuracy.

Gravity gradients are also important if one wants to compare gravity values obtained
by different instruments. Since the two instruments cannot (at least for simultaneous mea-
surements) operate at exactly the same location, one has to transfer both gravity values to
a common spatial reference point.

Since we have substantial masses in our laboratory, for example the optical table, we
could not assume the gravity gradient to be linear and constant. But the atomic fountain
apparatus is also stationary, which precludes access to the exact measurement site. We
therefore moved a LaCoste-Romberg type G gravimeter with manual readout between the
reference location of the FG5 absolute gravimeter measurement (~ 1.308 m above floor
level, ~ 2.5m horizontally from the atomic fountain) and a point at the same height as the
top of the atomic fountain and as close to it as possible (1.810m above floor level, ~ 30 c¢cm
horizontally from atomic fountain). Repeating this procedure 15 times we measured a
gravity difference of 147 4+ 5 uGal, corresponding to a linear gravity gradient of 293 £
10 pGal/m. The relatively large error is mostly due to the limited readout resolution of

the gravimeter and the large vibrational background noise.

6.5.3 Finite speed of light

Retardation effects due to the finite speed of light can introduce substantial systematic
errors for certain measurement configurations. This problem is not specific for atom inter-
ferometric measurements, it also afflicts classical gravimeters that monitor the position of
a freely falling retro-reflector using a laser interferometers.

The effect is most easily understood for a measurement in which the frequency of just one
Raman beam, lets say the upward pointing one, is chirped at a rate a = ke.gg that, when
neglecting retardation effects, would exactly cancel the Doppler shift of the accelerating
atom. This chirp rate is defined as the rate of change of the instantaneous laser frequency
at some point early on in the laser path, somewhere close to the location of the phase lock
photodiode. Because of the finite speed of light any change in the instantaneous frequency
takes a certain amount of time to propagate to the actual location of the atom. This

would be of no consequence for a stationary atom since the constant propagation delay



140 CHAPTER 6. SYSTEMATIC ERRORS

would produce an identical chirp, just centered around a slightly different frequency, at
the location of the atom itself. However, if the atom is moving towards the laser source
the propagation delay will shrink constantly and the apparent chirp rate is higher at the
location of the atom — it sees the changes in frequency with less and less delay. Accordingly,
movement away from the laser source will result in a lower apparent chirp rate. Both effects
reverse sign if the downward pointing Raman beam is chirped instead of the upward pointing
one.

By making the measurement as symmetric as possible, either by chirping both Raman
beams by equal amounts in opposite directions or by applying the central Raman pulse
exactly at the top of the fountain, one can all but eliminate this effect. Otherwise one has

to correct the measured gravity value by

A9 2% T Adown (6.17)
g C Qup — Gdown
where vg is the atomic velocity at the moment of the m-pulse and ayp, and agown are the
chirp rates of the upward and downward pointing Raman beams, respectively.

For our typical fountain configuration we chirp only one of the Raman beams. We also
have to make the interferometer slightly asymmetric in order to prevent the central Raman
pulse from driving Doppler insensitive transitions. The velocity vy corresponding to this
asymmetry is about 0.04m/s and results in a minute 0.3 uGal correction. If, instead of

using an almost symmetric fountain, we would simply drop the atoms (using the same pulse

spacing), then this effect would cause a much larger offset of 10.4 puGal.

6.5.4 Other relativistic effects

Relativistic effects that arise in the context of our atom interferometric measurement of
gravity, or inertial forces in general, can be divided into two fundamental classes: Those
that would also apply to an equivalent measurement using classical objects, and others
that are intrinsically related to the quantum mechanical nature of the measurement. In
this section we use classical calculations to deal with contributions from the first class only,
show that they are negligible and then assume that additional contributions from the second
class can be neglected as well.

In the classical description of our system the atom is modeled as a freely falling classical
object, able to measure the phase of the Raman light field along it’s space-time path and

comparing it to the phase of an internal clock (see Section 2.1.3).
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Relativistic effects can show their influence in several different ways: The internal clock
of the atom will experience time dilation effects because of its change in velocity as well
as its changing position in Earths gravitational potential. Fully relativistic dynamics result
in a slightly different atomic trajectory. The Raman light is propagating in curved space
time, which slightly modifies the electromagnetic wave equation. At higher atomic velocities
the fully relativistic treatment of the Doppler effect has to be applied. Finally, there are
retardation effects because of the finite speed of light, as discussed in the previous section.

All these effects are not independent but intermingled intimately. One therefore has to be
very careful not to double-count or to neglect anything when estimating their importance.
Instead of trying to estimate the effects separately it is much safer to start with a fully
relativistic description in curved space time and then to apply the necessary approximations
to the system as a whole.

Luckily, it is not necessary to go through this elaborate process in the context of this
work. Since the maximum atomic velocity v during the interferometers sequence is less than
1.6 m/s, and since the altitude change dh of the atom is less than 15cm, we find

%Z—j < 2x10°17 (6.18)
for the scale factor which is relevant for the second order Doppler shift and the velocity
dependent time dilation. We also have

gAh

c2

< 2x10°17 (6.19)

for the scale factor which is relevant for the gravitational redshift of the Raman light and
the gravitational time dilation of the atom.

These numbers are so small that even without complete understanding of the theory we
can safely assume that they will not cause problems. Even if somehow the gravitational
redshift of the optical frequency of the Raman beams instead of just that of their frequency
difference should be a relevant quantity, something that is not supported by our current
theoretical analysis, it would only lead to effects of the order of 10712,

A more complete treatment, necessary in particular to include the second class of effects
mentioned above, would require a framework for doing relativistic quantum mechanics in
curved spacetime. Since to the best of our knowledge there are no universally accepted and
uncontested methods, it is by no means trivial to perform such calculations. Several authors

[56, 57, 58] have nevertheless endeavored to do so and have predicted possible effects. These
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are generally too small to affect our gravity measurement, but it might be possible observe
them in future atom interferometers.

Since little work has been done using the underlying theoretical framework, limiting
the opportunity to encounter many of the possible caveats, these treatments should be
approached with some caution. It is always possible that something important might have
been left out, or maybe has fallen victim to one of the many approximations that were used.
Furthermore, it is usually hard to apply these models to the actual experimental situation
with its added complexities and complications.

Given the predictions from such theories, it is not always easy to disentangle the purely
quantum mechanical part from the one that has a classical equivalent. It is important to
note, though, that these theories clearly indicate that the quantum nature of the system
leads to a much richer set of effects, for example such that depend on spin. They also
nourish the hope that atom interferometry might allow us to encounter some new physics

in the future.

6.5.5 Berry phase

A Berry phase, or geometrical phase, can be important for many quantum mechanical
systems, including atom interferometers [59, 60, 61, 62]. Most commonly, it will arise in
the context of adiabatic processes. If a Berry phase is relevant for an atom interferometric
measurement, but is overlooked when analyzing the system, it will most likely lead to very
substantial measurement errors.

Solving the time dependent Schrodinger for the system under study does essentially
rule out making such a mistake. Although it might still be difficult to identify and isolate
Berry phase contributions, they will be handled automatically by this procedure. But
other approaches, including path integral formalism and perturbation theory, might ignore
important Berry phase contributions completely.

These statements should mostly serve as a general warning about the importance of
Berry phase effects. They do not seem to be a problem for our particular interferome-
ter configuration — the atom-light interactions are treated by solving the time dependent
Schroedinger equation and there are no obvious adiabatic processes, except maybe be-
cause of the atoms movement in external electromagnetic fields (i.e. Aharanov-Bohm or
Aharanov-Cashier type effects). Since these field are very weak, they should not cause

substantial errors, even if there is a related Berry’s phase.
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| Source | Magnitude (uGal) | Uncertainty (uGal) | Time scale
Solid Earth tides || 300 0.2-0.5 Diurnal
Ocean loading 20 0.2 Diurnal
Air pressure 8 1-5 Hours—Diurnal
Water-table Site-dependent Site-dependent Seasonal
Polar motion 10 < 0.01 12, 14 months
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Table 6.1: Environmental effects

The situation might be different for interferometers using adiabatic transfer processes in
their beam splitterst or employing more complicated pulse sequences, especially such that

address only a single arm of the interferometer at a time.

6.6 Environment

Environmental effects have an substantial impact on absolute gravity measurements and
play a somewhat special role. Whether the resulting gravity offsets are considered system-
atic errors or valid measurement of environmental conditions is somewhat arbitrary. By
convention, uncertainties due to environmental signals are generally not included in the
error estimate for any absolute gravimeter.

Aside from these fundamental considerations it is important to understand the various
environmental effects for purely practical reasons. Otherwise, it would not be possible to
compare gravity measurements taken at different times and locations. Gravity variations
due to environmental effects could also mask those caused by instrumental flaws. Table 6.1

summarizes some of the most important effects [5].

6.6.1 Tidal effects

The biggest environmental effect by far (~ +150 uGal) are gravity tides, caused by the
relative motion of Earth, Moon and Sun [63]. We have already discussed tides, including
the complications cause by ocean loading effects [39, 40, 41, 42, 64] in Sec. 4.3. Here we only
mention one more subtlety that arises in the context of absolute gravity measurements, the

treatment of the so called permanent tide.

tPreliminary analysis shows no problems for the specific method used in the atom interferometric mea-
surement of i/mcs [16].
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This DC term can be understood when considering the really long term average of lunar
and solar positions relative to Earth. The gravitational force exerted by the resulting average
mass distribution, which is toroidal, gives rise to the permanent tide. Not all computer tide
models retain this term, and if one wants correct for it in absolute gravity measurements is

purely a matter of convention.

6.6.2 Atmospheric pressure

Variations in atmospheric pressure also affect local gravity. The basic mechanism behind
this effect is easy to understand. Higher air pressure corresponds to an increased density of
air over the measurement site. The additional mass will exert an upward directed gravita-
tional force on the gravimeter, counteracting Earth’s gravitational pull and therefore causing
a slightly lower total gravity value. The size of this effect is approximately 0.3 pGal/mbar
and typical weather induced pressure variations will therefore change local gravity values
by several pGal, making it necessary to keep detailed pressure records in order to apply the
appropriate corrections.

The 0.3 uGal/mbar sensitivity factor is only a semi-empirical quantity, but it will usually
suffice to make gravity measurements accurate to a few pGal. If one wants to achieve even
higher accuracies, then one has to use much more elaborate models that also include elastic
deformations of the continental crust, and the behavior of nearby oceans, in response to air
pressure changes [65].

Even after selecting appropriate model for air pressure effects the gravity readings still
need to normalized to a standard pressure. The usual convention is to use the nominal
pressure computed from the topographic elevation of the measurement site following DIN
standard #5450 and using the formula [66]

5.2559
0.0065 hm> (6.20)

Dn = ]013.25(]— 98815

where p,, is the nominal pressure in mbar and h,, the topographic elevation in meters.

Water table

Gravitational attraction from a fluctuating water table and easily cause gravity changes of
several uGal. These variations are very site depend and generally hard to predict. If the

water table is modeled as an infinite plane then the effect is 42 uGal/m, scaled by the bulk
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porosity. The Bulk porosity can vary from < 3% in competent granite to > 50 % in sands

[5].

6.6.3 Polar motion

Another problem arises because Earth’s rotational axis is not absolutely stationary but
moves around by small amounts relative to Earth’s body. Correspondingly, the position
of the rotational poles relative to Earth’s geography will change; hence the term polar
motion. Local gravimetric measurements are sensitive to this motion because the centrifugal
component of the measured acceleration will change due to variations in the distance of the
measurement site from the rotational axis. The gravity changes due to this effect are
typically a few puGaland have a characteristic time scale of 1 year. Since the pole positions
are known with exquisite accuracy, this effect can be computed precisely using the following

formula [66, 67:

Ag = —1.164 x 10® w? R 2sin ¢ cos ¢p(x cos A — ysin \) (6.21)
where
Ag = polar motion correction (uGal)
w = FEarth’s angular rotational velocity (rad/s)
R = equatorial radius (semi-major axis) of reference ellipsoid (m)
¢ = geodetic latitude of the observation station
A = geodetic longitude of the observation station

z,y = pole coordinates in IERS¥system (rad)

The pole positions are frequently determined with milli arc second resolution by VLBIY
measurements of Quasar positions. They are published in the monthly IERS Bulletin A
which can be obtained from via the Internet (http://maia.usno.navy.mil/) from the US
Naval Observatory Earth Orientation Department.

Also available from this site is a IERS publication [40] which not only describes this data
in detail but also deals with tidal effects, ocean loading, atmospheric loading, postglacial

rebound, tectonic plate motion, and even general relativistic models for time and coordinate

$International Earth Rotation Service
YVery Long Baseline Interferometry
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systems. In short, it contains almost everything one would ever want to know about the
motions of the planet Earth. An enormous number of related references can also be found

in this publication.

6.6.4 Postglacial Rebound

Gravity measurements are taken in regions that were covered by glaciers during the last ice
age will usually show the effects of postglacial rebound [68]. When the glaciers were present
their enormous weight caused deformations of the underlying continental crust, depressing
it by up to several hundred meters. Now that the glaciers are gone the crust is rebounding
slowly, typically by a few millimeters a year. This change in altitude then causes pGal level
changes in the local gravity value.

Scandinavia and the Canadian shield of North America are exemplary sites showing
postglacial rebound. But since our gravity measurements are taken in California, far away

from regions of previous glaciation, we need not worry about this effect.

6.6.5 Tectonic plate motions

An effect that could be more relevant in California are potential vertical displacements of the
measurement site following a major earthquake. However, no such earthquake happened
during the lifetime of this experiment. Measurements in other regions might be more
susceptible to tectonic movements, for example in mountain ranges like the Andes that

experience substantial tectonic uplift.

6.6.6 Local mass distribution

Local mass distributions, especially when they change over time, become important when
gravity is measured at the pGal level. Most absolute gravity measurements taken in
the context of geophysical research are therefore conducted at sites specifically selected to
control these influences.

One of the primary characteristics of a good site is remoteness from any human activity, a
criterion definitely not fulfilled by our instruments location inside a busy university physics
building. To make things worse, the physics building is currently surrounded by huge

construction site — demolition of multiple nearby buildings, excavation of big holes in



6.6. ENVIRONMENT 147

the ground and construction new structures do obviously not constitute an undisturbed
environment.

Table 6.2 lists several local objects whose gravitational fields could affect our experiment.
The more distant objects simply modify the absolute gravity value at the measurement site.

The closest objects could also cause additional problems by producing nonlinear gravity
gradients (Sec. 6.5.2).

Object mass distance gravity gradient | angle | gravity change
(kg) (m) (uGal) | (uGal/m) | (deg) (nGal)
Earth 6.0 x 107 | 6.4 x 10° | 9.8 x 10° 308 0 9.8 x 10°
Optical table 1000 1.5 3.0 4 0 3.0
Aluminum spacers 1 0.1 0.7 13 0 0.7
Experimental physicist 90 1.0 0.7 1.2 45 0.5
Theoretical physicist 120 3.0 0.1 0.06 0 0.1
Loaded truck 40000 10 2.7 0.5 45 2.0
Physics lecture hall 2.0 x 10° 50 5.0 0.2 90 0.0
(demolished)
Hole 2.0 x 107 100 13.3 0.3 85 1.3
(excavated)

Table 6.2: Gravitational effects of various nearby objects

The nearby construction activities are currently our biggest concern. We have made
substantial progress in eliminating systematic offsets in our own instrument since the com-
parison measurement with the falling corner cube gravimeter (Sec. 4.4). The only classical
reference value we have available to compare with our new atom interferometric gravity
measurements is therefore several months old and might not be valid anymore because of

the construction activities.

6.6.7 Motion of building

Another problem with our instruments location on the second floor of the physics building
are possible movements of the building and the resulting changes in the measurement height.

One possible cause for building movements would be temperature changes. We can
make a rough worst case estimate for the effects of pure thermal expansion. Assuming
that the floor of our laboratory is about 10 m above the foundations of the building, daily
temperature variations of 10° Celsius, and using the thermal expansion coefficient of 1.4 x
1079 /K for concrete, we find a vertical displacement of 1.4 mm. The corresponding change in

gravity of 0.4 uGal would be to small for us to detect. However, the number is big enough
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to raise concerns about additional, possibly larger, vertical motions caused by thermal
deformations of the building.

The building might also move for a variety of other reasons, for example ground motions
related to a nearby construction site or changes in the mechanical properties of the soil after
rainfall. However, these effects would be hard to identify and so far we have seen no clear

evidence for their existence.

6.6.8 Arbitrary conventions

Although not important when directly comparing two instruments, as long as the measure-
ments are taken simultaneously and at approximately the same location, certain conventions
have to be followed in most other cases. They are especially important when comparing
new measurements with previous gravity values obtained from independent sources. The
problem is that these conventions are somewhat arbitrary and that not everybody uses the
same ones. Furthermore, it is often difficult to determine which set of rules was applied for
a particular published value.

The most important convention by far is the definition of a standard measurement
height. Since vertical gravity gradients of 300 uGal/m are typical, it makes a big difference
if a gravity measurement is at a height of 15cm or 100 cm above ground. We are aware
of three different standards: 1m above ground, 80 cm above ground or at ground level.
Because of this confusion, for serious work with absolute gravity data it is necessary to
obtain all accessible documentation about the earlier measurements, including a site map

and gradient data.

6.7 General tests and observations

Most of the experimental tests described so far were specifically tailored to investigate
known, or at least suspected, systematic effects. But even without such prior suspicion one

can perform other, more general tests in the hope of finding additional problems.

6.7.1 Varying the interferometer pulse spacing

One possibility is to check if the measurement results are consistent for different spacings

of the interferometer pulses. Fig. 6.21(a) shows the result of such a test for the Doppler
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sensitive interferometer configuration. ldeally, the measured gravity value should not de-
pend on the pulse spacing, except for a very small contribution (0.64 pGal at T = 160 ms,
0.16 uGal at T = 80ms) due to the change in the average height of the atoms in the
presence of the local gravity gradient. Within the error bars this seems to be the case, but
only if the effects of nonlinear RF phase shifts are removed by averaging measurements for
two directions of the photon recoil (Sec. 6.3.1).

It is also useful to perform the same test using the equivalent Doppler insensitive in-
terferometer configuration, which might be sensitive to some of the same problems but is
not complicated by RF phase shifts and tidal gravity variations. The results in Fig. 6.21(b)
indicate that there might be indeed some problem for pulse separations of less than 100 ms,
and looking back at the Doppler sensitive data we find indications for this as well. Since
for shorter pulse separations the same shift in gravity corresponds to ever smaller shifts
in phase, this seems to indicate that there may be problems with the phase of the Raman

beams, for example caused by synchronous noise in the RF-system.

6.7.2 Varying the time of the central interferometer pulse

Another possible approach is to keep the pulse separation constant, but to vary the time
of the central m-pulse. This changes where along their fountain trajectories the atoms are
during the interferometer sequence, and consequently any effect related to spatial position
should manifest itself in the data. The method is also sensitive to any form of synchronous
noise since it changes the timing relationship between the interferometer sequence and the
rest of the experiment.

Again it is possible to perform Doppler sensitive as well as Doppler insensitive versions
of this experiment. In both cases the limited vertical extend of the magnetic shield forces
us to reduce the pulse spacing T' to 80 ms. This increases the measurement time necessary
to achieve a given noise level in g by a factor of ~16.

The Doppler sensitive measurement is complicated by RF phase shifts, which are a
function of the time dependent Raman difference frequency. In our setup we have two
phase-locks that determine the Raman difference frequency (Sec. 3.4.2). To eliminate the
RF phase shift effects we can adjust the reference frequency fsrs to accommodate the
changes in the pulse time, while keeping the sweep of the other reference frequency frgk,
which is responsible for most of the RF phase shift effect, untouched.

The results for Doppler sensitive and Doppler insensitive cases are shown in Figures
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Figure 6.21: Effect of varying the interferometer pulse spacing. (a) Doppler sensitive config-
uration. 1 uGal = 66 mrad for T = 80ms, 1 uGal = 265mrad for T' = 160 ms. (b) Doppler
insensitive configuration. This measurement normally only makes sense in terms of phase,
but we can use the same relation as in the Doppler sensitive case to calculate an equivalent

gravity shift.
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Figure 6.22: Effect of varying the time of the central interferometer pulse. (a) Doppler
sensitive configuration. 1puGal = 66 mrad for T'= 80ms. (b) Doppler insensitive configu-
ration. This measurement normally only makes sense in terms of phase, but we can use the
same relation as in the Doppler sensitive case to calculate an equivalent gravity shift.
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6.22(a) and 6.22(b), respectively. Theoretically, the Doppler insensitive result should be
completely independent of the pulse time, and the Doppler sensitive result should only
show a slight parabolic dependence due to gravity gradients and a linear term due to the
finite speed of light. That they both show substantial, while markedly different, variations is
disturbing. They seem to exhibit a certain degree of antisymmetry and, perhaps, periodicity.
So far we have not been able to determine the cause of the problem.

If the magnitude of the variations were the same for 160 ms between pulses, then we
would have to include it in our error budget as an possible systematic of approximately
+10 pGal. But since it shows up in the Doppler insensitive scan as well, it is probable
phase related and its effect on the gravity measurement for T' = 160 ms should be smaller

by a factor of 4. This means a possible systematic error of £2.5 uGal.

6.7.3 Fluctuations during long term measurements

Another cause of concern are the occasional rapid changes in the measured gravity value
during long term measurements. Fig. 6.23 shows a few examples of such rapid changes
during the comparison measurement with the falling corner—cube gravimeter. It would be
interesting to know if the effect is also present in the corner—cube data, but it was completely
masked by the higher levels of measurement noise.

The changes have typical rise and fall times of less than an hour, which should be too
rapid for most environmental effects like tides or changes in air pressure. On the other
hand, the data shows a certain periodicity which suggests that tidal effects, most probably
due to ocean loading, might play a role. We have therefore used also used a different ocean
loading model (used by NOAA to analyze the falling corner-cube measurements) to analyze
our data. While this leads to a somewhat different looking graph (Fig. 6.23c), it does not
eliminate the jumps. We can also rule out air pressure changes as the cause, since an
independent recording of the pressure during the experiment shows no equivalent jumps.

Without an apparent explanation for the jumps, we have to assume that they are the

manifestation of a yet unidentified, time dependent systematic effect of up to 3uGal.

6.8 Summary

Figure 6.24 shows a graphical representation of all the systematic errors discussed in this

section. In addition to giving order of magnitude estimates of these effects for the current
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instrument, the diagram also points out the improvements achieved since the early days of
the project. Furthermore, it indicates potential pitfalls that, luckily, never surfaced in the
context of the current experiment — either because they were anticipated and dealt with
in advance, or because they would show up only under slightly different conditions.

Recognizing and controlling the Coriolis sensitivity led to biggest improvement of the ex-
perimental accuracy, not counting the use of the correct value of the cesium Do—wavelength.
The next biggest improvement can be attributed to enclosing the active vibration isolation
system with magnetic shielding.

Currently, instrumental accuracy is limited mostly by the difficulty of minimizing the
interferometers sensitivity to Coriolis forces, and by nonlinear phase shifts in the RF elec-
tronics controlling the frequency difference of the Raman beams. There are also some
additional unidentified problems, most probably are related to noise synchronous with the

experiment, and more care has to be taken to account properly for all environmental effects.
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Chapter 7

Conclusion

7.1 Current status

After implementing the improvements discussed earlier in this thesis we have performed
another atom interferometer measurement of g. The results are shown in Table 7.1, including
some of the corrections that we apply to the raw gravity value. While some of these
corrections (polar motion, transfer to top of fountain) are simply a matter of convention,
others (RF phase shift, cesium lock offset) are necessary to account for known systematic

effects. The table also indicates the most important known measurement uncertainties.

Value (pGal) | Uncertainty
Measured g value (tide corrected) 979,933,179 | £1
Polar motion —4.8 | +£0
Atmospheric pressure +0.7 | £0.1
RF phase shift —6 | £2
Cesium lock offset -3 | +£1
AC Stark shift 0] +2
Coriolis effect due to Earth’s rotation 0] +2
Tilt and retro-reflection 0+1
Finite speed of light +0.3 | £0.1
Transfer to top of fountain —6.0 | £0.2
Atom interferometer gravity value 979,933,160 | &4

Table 7.1: Calculation of atom interferometer gravity value.
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Value (pGal) | Uncertainty

Measured g value (tide corrected) | 979,933,304 | £2
Polar motion —59 | £0

Atmospheric pressure +1.7 | £0.1

Falling corner—cube gravity value | 979,933,300 | =2

Table 7.2: Calculation of falling corner—cube gravity value.

We can compare this new result to the falling corner—cube measurement taken several
months earlier, but we have to consider the possibility that the gravity value could have
changed in the meantime. For example, changes in the local mass distribution caused by
the major construction work in vicinity of our laboratory (Sec. 6.6.6) or seasonal changes
in water table (Sec. 6.6.2) could be responsible for differences up to a few pGal.

Table 7.3 nevertheless shows that after including the measurement height correction
(Sec. 6.5.2) our value for g and the one measured by the classical absolute gravimeter now
agree within (74 7) x 1079 g. This is consistent with the estimated systematic uncertainty
and is by far the highest accuracy achieved by any matter wave interferometer measurement
so far. It is also in marked contrast to the consistent discrepancies of order 1—10 % between

classical and neutron interferometric gravity measurements [69, 70, 71, 72].

7.2 Future prospects

To improve the measurement accuracy even further it will be necessary to improve control
of the Raman phase and to address problems due to Coriolis forces and environmental ef-

fects. A good way to address these issues would be to build portable versions of the atom

Atom interferometer gravity value 979,933,160 + 4
Falling corner-cube gravity value — 979,933,300 £+ 2
Measurement height correction + 147 + 5
Difference 7T £ 7

Table 7.3: Comparison between atom interferometer and falling corner cube gravity mea-
surements. An independent measurement of the gravity gradient (using LaCoste-Romberg
spring-type gravimeters) is used to compensate for the difference in measurement height.
The atom interferometer gravity value is slightly higher.
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interferometer in order to facilitate measurements and comparison studies with different
instruments at sites better suited than our current laboratory. Being able to rotate the
instruments around the vertical axis would also allow one to identify and eliminate Coriolis
effects. There are several other possible improvements: Horizontal velocity selection can
reduce Coriolis effects. Additional Raman pulses can increase the separation between in-
terferometer paths and, consequently, the measurement sensitivity. Alternatively, one can
use a different intermediate state and shorter wavelength Raman lasers to achieve the same
effect. Using a taller fountain and a pulse spacing larger than the current 7' = 160 ms
can decrease the relative importance of Raman phase errors. Keeping the atoms in same
internal state for both interferometer paths would substantially reduce the sensitivity to
magnetic and electric fields.

For practical applications, many of which only require an accuracy of Ag/g ~ 1078, one
might also try to design a smaller, simplified instrument. In this case, it might be possible
to use either continuous atomic beams or high repetition rates (> 10Hz) to circumvent
aliasing problems to alleviate the need for a complex active vibration isolation system.

Future experiments could use the techniques developed here to perform test of the
equivalence principle or to measure Newton’s gravitational constant, G. It should also
be possible to exploit the wavelength dependence of the interferometer phase shift: Using
different intermediate states for the Raman transitions would allow one to compare the
wavelengths of all the optical transitions that are accessible in this way, with a precision of

1079 or better.
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